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Abstract

& Contextual recall in humans relies on the semantic relation-
ships between items stored in memory. These relationships
can be probed by priming experiments. Such experiments
have revealed a rich phenomenology on how reaction times
depend on various factors such as strength and nature of
associations, time intervals between stimulus presentations,
and so forth. Experimental protocols on humans present
striking similarities with pair association task experiments
in monkeys. Electrophysiological recordings of cortical neu-
rons in such tasks have found two types of task-related activ-
ity, ‘‘retrospective’’ (related to a previously shown stimulus),

and ‘‘prospective’’ (related to a stimulus that the monkey
expects to appear, due to learned association between both
stimuli). Mathematical models of cortical networks allow
theorists to understand the link between the physiology of
single neurons and synapses, and network behavior giving
rise to retrospective and/or prospective activity. Here, we show
that this type of network model can account for a large va-
riety of priming effects. Furthermore, the model allows us
to interpret semantic priming differences between the two
hemispheres as depending on a single association strength
parameter. &

INTRODUCTION

Contextual recall such as involved in language compre-
hension requires dynamic access to knowledge in mem-
ory. This fundamental cognitive function is based on
semantic priming processes depending on learned as-
sociations between concepts in memory. The first ex-
perimental study of semantic priming effects reported
shorter reaction times with related word pairs (e.g.,
butter and bread) than with unrelated pairs (e.g., tree
and bread) (Meyer & Schvaneveldt, 1971). Priming
effects were soon reported to occur during words se-
quence processing, when the target was presented fol-
lowing a related or unrelated prime (Meyer, Schvaneveldt,
& Rudy, 1972). A typical semantic priming procedure re-
quires subjects to read the prime and give a response to
the target as fast and accurately as possible according to
a given task, such as lexical decision, word naming, and
semantic categorization. According to the paradigm of
mental chronometry proposed by Donders (see Posner,
1978), variations in a behavioral response times are as-
sumed to reflect dynamic variations in the ‘‘activation’’ of
memorized concepts by a semantically related contex-
tual prime word or stimulus (see Neely, 1991; Meyer &
Schvaneveldt, 1976; Collins & Quillian, 1969). The possi-
bility given by reaction times studies to probe the mag-
nitude of the semantic activation of concepts in memory
made semantic priming in humans an active field of re-
search. A large amount of data reveals a rich phenome-
nology of semantic processes that are still to be linked

to realistic properties of cortical networks in a unified way.
Semantic priming effects vary notably with the timing of
experimental procedures, as well as the strength and type
of the prime–target relation (see McRae & Ross, 2004;
Chiarello, Liu, Shears, Quan, & Kacinik, 2003; Hutchison,
2003; Lucas, 2000; Neely, 1991 for reviews).

Semantic Priming Dynamics

The temporal dynamics of priming effects are investigated
in humans by manipulating the time elapsed between
prime and target onsets, or stimulus onset asynchrony
(SOA). Priming effects are reported to arise at very short
SOAs of a few tens of milliseconds (Perea & Rosa, 2002;
Rastle, Davis, Marslen-Wilson, & Tyler, 2000; Lee, Binder,
Kim, Pollatsek, & Rayner, 1999; Perea & Gotor, 1997;
Lukatela & Turvey, 1994; de Groot & Nas, 1991; Sereno,
1991; Beauvillain & Segui, 1983). Priming effects increase
with increasing SOAs (Coney, 2002; Rastle et al., 2000)
and reach maximum amplitude that sustains up to SOAs
of several seconds (Hill, Strube, Roesch-Ely, & Weisbrod,
2002; Deacon, Uhm, Ritter, Hewitt, & Dynowska, 1999;
Brodeur & Lupker, 1994; Balota, 1983; Fowler, Wolford,
Slade, & Tassinary, 1981; Fischler, 1977). The precise time
course of priming effects has also been reported to depend
on the type of semantic relation and on association
strength.

Types of Relationships between Prime and Target

Studies on semantic priming have investigated how prim-
ing effects depend on the type of relationships between
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Sophia Antipolis, Nice, France

D 2008 Massachusetts Institute of Technology Journal of Cognitive Neuroscience 21:12, pp. 2300–2319



prime and target (direct vs. indirect), and on the as-
sociation strength (estimated in production norms as
the percentage of production of targets associated to a
given prime word among several subjects; McRae, Cree,
Seidenberg, & McNorgan, 2005; Cree & McRae, 2003;
Nelson, McEvoy, & Schreiber, 1999; McRae, de Sa, &
Seidenberg, 1997; Battig & Montague, 1969; Shapiro &
Palermo, 1968).

Step 1 priming corresponds to a direct association be-
tween prime and target in memory (e.g., tiger–stripes).
It is typically reported to arise at short SOAs (Lee et al.,
1999; Perea & Gotor, 1997; Perea, Gotor, & Nacher, 1997;
Hodgson, 1991; den Heyer, Briand, & Smith, 1985). Some
studies report late effects (Rastle et al., 2000; Smith,
Briand, Klein, & den Heyer, 1987) or even no effects
(de Mornay Davies, 1998; Thompson-Schill, Kurtz, &
Gabrieli, 1998), especially at short SOAs on weak asso-
ciates (Williams, 1996; see Hutchison, 2003 for a discus-
sion). Such variability in the onset and magnitude of
Step 1 priming effects is reported as depending on asso-
ciation strength (Coney, 2002; Abernethy & Coney, 1993).

Step 2 priming corresponds to an indirect association
through a common associate [e.g., lion–(tiger)–stripes].
Such indirect prime–target relationships typically give
rise to significant priming effects (Kreher, Holcomb,
& Kuperberg, 2006; Bennett & McEvoy, 1999; Kiefer,
Weisbrod, Kern, Maier, & Spitzer, 1998; Livesay & Burgess,
1998; Weisbrod, Maier, Harig, Himmelsbach, & Spitzer,
1998; Sayette, Hufford, & Thorson, 1996; Spitzer, Braun,
Maier, Hermle, & Maher, 1993; McKoon & Ratcliff, 1992;
McNamara, 1992; Shelton & Martin, 1992; McNamara
& Altarriba, 1988; Ratcliff & McKoon, 1988; Balota &
Lorch, 1986; Motes, personal communication, for a meta-
analysis; but see de Groot, 1983). Step 2 priming is re-
ported as weaker than Step 1 priming (Kiefer, Ahlegian,
& Spitzer, 2005; Hill et al., 2002; Chwilla, Kolk, & Mulder,
2000; McNamara, 1992; see Weisbrod et al., 1999), and
stronger than Step 3 priming reported across two in-
termediate items [e.g., mane–(lion–tiger)–stripes; see
Chwilla & Kolk, 2002; McNamara, 1992]. Some authors
report Step 2 priming at long SOAs only (Arnott, Chenery,
Copland, Murdoch, & Silburn, 2003; Hill et al., 2002;
Bennett & McEvoy, 1999; Kischka et al., 1996; Spitzer
et al., 1993), or more reliable at long SOAs than at short
SOAs (Kiefer et al., 2005; Moritz, Woodward, Kuppers,
Lausen, & Schickel, 2003; Hill et al., 2002; but see Arnott
et al., 2003; Kischka et al., 1996).

Other studies have investigated how Step 2 priming
effects depend on the number n of common associates
to the prime and the target (Step 2n priming; Fischler,
1977; see McRae, 2004). The degree of overlap n be-
tween prime and target associates differs from direct
association strength and can involve semantic relations
between category and exemplar (e.g., bird–robin), con-
cept and feature (e.g., bird–feathery), and co-exemplars
(e.g., robin–sparrow). Step 2n priming is reported at
short SOAs (Deacon et al., 1999; Thompson-Schill et al.,

1998; Ober, Vinogradov, & Shenaut, 1995; Brodeur &
Lupker, 1994; Smith et al., 1987; den Heyer et al., 1985;
Favreau & Segalowitz, 1983; Neely, 1977), equivalent as
(den Heyer et al., 1985) or stronger than (Smith et al.,
1987) Step 1 priming. The magnitude of Step 2n prim-
ing effects is reported as increasing with overlap n
(Gonnerman, Seidenberg, & Andersen, 2007; Sanchez-
Casas, Ferré, Garcia-Albea, & Guasch, 2006; Ober et al.,
1995; Neely, Keefe, & Ross, 1989; Lorch, Balota, & Stamm,
1986; Schwanenflugel & Rey, 1986; see also McRae, Cree,
Westmacott, & De Sa, 1999; Massaro, Jones, Lipscomb,
& Scholz, 1978, Experiment 1; but see McRae et al., 1999,
Experiment 2). Step 2n is also reported as occurring
more reliably through highly overlapping primes and
target associates (Perea & Rosa, 2002; Frenck-Mestre &
Bueno, 1999; de Mornay Davies, 1998; McRae & Boisvert,
1998; Hodgson, 1991; Lupker, 1984; see Hutchison, 2003
for a discussion). At long SOA, the reported Step 2n

priming effects depend less reliably on overlap (Keefe &
Neely, 1990; Smith et al., 1987; Lorch et al., 1986; Favreau
& Segalowitz, 1983; Lorch, 1982; but see Grose-Fifer
& Deacon, 2004; Neely et al., 1989; Lorch et al., 1986;
den Heyer et al., 1985; Becker, 1980; see McRae et al.,
1999). It is then important to discriminate between the
number n of common associates of two words and the
semantic field s of a given word, defined as its number
of associates, in addition to the associative strength a.
This permits to define general semantic relationships
involving combinations of multiple Step Nn

s with variable
values of N, n, and s.

Priming-like Experiments in Monkeys

Experimental studies on humans provide a rich phe-
nomenology of behavioral effects, but it is hard to infer
from these data the mechanisms underlying such phe-
nomena at the neuronal or network levels. Recent elec-
trophysiological experiments on behaving monkeys
provide invaluable information on the dynamics at the
neuronal level underlying priming-like effects. Pair asso-
ciate tasks used to probe neuronal correlates of learn-
ing of associations between stimuli present striking
similarities with human priming protocols. In such tasks,
the monkey learns associations between arbitrary vi-
sual stimuli. After learning, a typical protocol consists of:
first, presentation of a (prime) image A followed, after a
delay period in which no information is available on the
screen, by the presentation of a (target) image B. Delays
involved in these protocols in monkeys are very similar to
the long SOAs used in humans (about 1000 msec). To
obtain a reward, the monkey is required to hold (or
release) a bar if the prime and the target are associates
(e.g., Erickson & Desimone, 1999; Rainer, Rao, & Miller,
1999). This is very similar to the go/no-go task used in
humans. It reveals priming effects in monkeys and in
humans very similar to those revealed by lexical decision
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and naming tasks specific to human studies. Another
type of task requires the monkey to choose the pair as-
sociate to the prime among two presented targets by
touching it on the screen (e.g., Naya, Sakai, & Miyashita,
1996; Sakai & Miyashita, 1991). In both tasks, two types
of selective neuronal activity are observed during the
delay period in both the temporal lobe (inferior tempo-
ral and perirhinal cortices) and prefrontal cortex. Some
neurons which are selective for a stimulus maintain an
elevated firing rate during the delay period following
presentation of that stimulus (retrospective activity), as
in classical delay match-to-sample tasks (Miyashita, 1988;
Miyashita & Chang, 1988; Fuster & Alexander, 1971). Such
neurons are widely believed to underlie short-term or
working memory of a stimulus. In addition, some neurons
also show ‘‘prospective’’ activity: Their firing rate in-
creases during the delay period, only when the monkey
expects (based on the first stimulus shown) that the
preferred stimulus of the corresponding neuron will
appear at the end of the delay period (Naya, Yoshida, &
Miyashita, 2001, 2003; Naya, Yoshida, Takeda, Fujimichi, &
Miyashita, 2003; Yoshida, Naya, & Miyashita, 2003; Erickson
& Desimone, 1999; Rainer et al., 1999; Tomita, Ohbayashi,
Nakahara, Hasegawa, & Miyashita, 1999; Sakai & Miyashita,
1991; Miyashita, 1988; Miyashita & Chang, 1988; see
Fuster, 2001). Hence, the presentation of an item to the
monkey activates not only neuronal populations repre-
senting the shown stimulus but also neurons represent-
ing stimuli that are associated to it. Those populations of
neurons seem to correspond to the ‘‘activated units’’
postulated by theories of priming in humans. Further-
more, some of these experiments demonstrate priming-
like effects on reaction times related to neurons’ spike
rates (e.g., Erickson & Desimone, 1999) that can predict
behavioral data such as reaction time (Roitman & Shadlen,
2002). The striking similarity between pair associate ex-
periments in monkeys and priming experiments in hu-
mans lead naturally to the hypothesis that priming effects
in humans involve prospective activity of neuronal popu-
lations encoding for associates of the prime. Priming
effects in humans would involve prospective activity of
neuron populations pertaining to a set of associates to
the prime, among which the actually presented target,
and not only a single associated target as in monkey ex-
periments. Such simultaneous prospective activities of
several neuronal populations coding for different objects
in memory are reported in studies in monkeys (Wallis &
Miller, 2003).

Models of Priming

Theoretical modeling provides a way to bridge the be-
havioral and cellular levels. Psychologists have long used
abstract ‘‘connectionist’’ models to account for the va-
riety of priming effects reported in humans. According
to the association-based view of priming, semantic mem-

ory is assumed to be organized as a semantic network
where concepts and features are encoded in a localist
way by single nodes (Anderson, 1976, 1983a, 1983b;
Collins & Loftus, 1975; Collins & Quillian, 1969). In localist
networks, Step 1 and Step 2n associations of variable
direct and indirect strengths would lead to priming ef-
fects through automatic spreading of activation from
node to node. According to the feature-based view of
priming, semantically related concepts would share com-
mon semantic features (Cree & McRae, 2003) in dis-
tributed networks (McRae & Ross, 2004; Randall, Moss,
Rodd, Greer, & Tyler, 2004; Cree, McRae, & McNorgan,
1999; Becker, Moscovitch, Behrmann, & Joordens, 1997;
Bullinaria, 1995; Masson, 1995; Plaut, 1995; Moss, Hare,
Day, & Tyler, 1994; Sharkey & Sharkey, 1992; Masson,
Besner, & Humphreys, 1991) based on attractor net-
work architectures (Hopfield, 1982). In distributed net-
works, recall of a given concept in memory corresponds
to convergence of the network to an attractor state, that
is, a stable distributed pattern of activation or inhibition
of units coding for features in a localist way. The level
of overlap between prime and target features then leads
to priming effects through activation/inhibition of fea-
tures units, without direct associations between concepts
but with direct associations between features. Another
group of theorists has used more biologically realistic
models of cerebral cortex to account for the monkey
neurophysiological data (see, e.g., Brunel, 2004; Amit,
1995; Amit, Brunel, & Tsodyks, 1994). These models
account both for retrospective activity in working mem-
ory (Amit, Bernacchia, & Yakovlev, 2003; Brunel & Wang,
2001; Haarmann & Usher, 2001; Renart, Moreno, de la
Rocha, Parga, & Rolls, 2001; Wang, 2001; Amit & Brunel,
1997) and prospective activity in paired associate tasks
(Lavigne, 2004; Mongillo, Amit, & Brunel, 2003; Lavigne
& Denis, 2001, 2002; Brunel, 1996). However, the wide
variety of semantic priming effects in human challenges
cortical networks models of biophysically realistic neu-
rons. Here, we show that elaborations of such models
that have been successful in reproducing the electro-
physiological data in monkeys can also reproduce many
types of behavioral findings on priming experiments in
humans.

METHODS

We model a local network of an area of association cor-
tex containing cells selective to objects or concepts that
show persistent activity following presentation of those
objects or concepts. We study a simplified ‘‘rate model’’
in which dynamical variables represent average firing
rates of populations of neurons which are selective to
the same object. We assume for simplicity nonoverlap-
ping populations of excitatory neurons coding for p dis-
tinct stimuli (Brunel & Wang, 2001; Amit & Brunel,
1997), shown schematically in Figure 1A.
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Each population i = 1,. . .,p is described by an average
firing rate whose dynamics is described by a standard
Wilson–Cowan type equation (Equation 1):

t
dvi

dt
¼ �vi þ �

1

p

Xp

j¼1

Jijvj þ Iext
i þ Isel

i � Iinh

" #
ð1Þ

where t represents the time constant of firing rate
dynamics, Jij represents the total synaptic strength from
population j to population i, Ii

ext represents the exter-
nal inputs to population i, Ii

sel represents the selective
inputs to population i, and Iinh represents a global in-
hibitory current regulating the activity of all excitatory
populations, which is here for the sake of simplicity
proportional to the average activity of excitatory popu-
lations (Equation 2).

Iinh ¼ JI

p

Xp

j¼1

vj ð2Þ

where JI represents the strength of inhibition. This de-
scription of inhibition corresponds to a scenario in which
inhibitory neurons have linear input–output relationship
and time constants that are much faster than excitatory
neurons. The external input in the absence of external
stimuli is chosen such that all populations in the net-
work have some prescribed level of background activity
v0 = 5 Hz. The synaptic strength between two excitatory

populations can take three values. Synaptic efficacy from
a population to itself is Jij = J1. Synaptic efficacy between
two populations that are selective to two unrelated items
is Jij = J0, where J0 < J1. Finally, the synaptic efficacy be-
tween two populations that are selective to two associated
items is Jij = Ja = J0 + a( J1 � J0), where 0 < a < 1
represents the strength of the association (Mongillo et al.,
2003; Brunel, 1996). J1, J0, and JI are chosen so that both
a nonselective background state and selective attractors
corresponding to either a single item (for a = 0) or groups
of items (for a > 0) are present in the network, and J0

is calculated as function of a to guarantee a constant
level of spontaneous activity of 5 Hz independently of
the value of a. Finally, � describes the static current-to-
rate transfer function (or f�I curve) (Equation 3). Here, we
take this function to be the transfer function obtained
analytically for quadratic integrate-and-fire neurons in
presence of background noise, which is expected to be
qualitatively (and even quantitatively in some conditions)
similar to the one of cortical excitatory neurons (Brunel &
Latham, 2003). The function � is given by

�ðIÞ ¼ 1ffiffiffiffi
p

p
tm

Z 1

�1
dzexp �Iz2 � s4z6=48

� �� 	�1

ð3Þ

where s = 0.5 and tm is the membrane time constant. The
transfer function is shown in Figure 1B.

We consider the dynamic properties of the present
model according to several scenarios with different se-
mantic relationships between p = 100 items stored in

Figure 1. (A) Architecture of the excitatory–inhibitory network: Excitatory neurons are divided in p subpopulations of neurons selective
for distinct stimuli. Inhibitory neurons are nonselective. Synaptic strength is indicated by line thickness; precise values of the parameters

are given in Table 1. (B) Population f–I curve, Equation 3 specifying how the average firing rate of a population of excitatory neurons

depends on the average synaptic inputs it receives.
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memory, organized in pg groups of pi items ( p = pipg).
In all scenarios, the synaptic matrix can have three dif-
ferent values, depending on the relationship between
items encoded by the pre- and postsynaptic populations.
The diagonal term (connections between neurons cod-
ing for the same item) is J1. Connections between popu-
lations coding for unrelated items have strength J0.
Finally, connections between populations coding for
related items have strength Ja = J0 + a( J1 � J0) where
a measures associative strength. The matrix describing
the network structure involves p = 100 items. For the
sake of simplicity, we show below for each scenario a
subset of the synaptic matrix with p = 6, pg = 2, and pi =
3, where we take J1 = 1 and J0 = 0.

A. Nonoverlapping Homogeneous Groups

In this scenario, items are all associated with each other
within a group (Parga & Rolls, 1998; Brunel, 1996). In
the case p = 6, pg = 2, and pi = 3, the synaptic matrix
has the following form:

M ¼

1 a a 0 0 0

a 1 a 0 0 0

a a 1 0 0 0

0 0 0 1 a a

0 0 0 a 1 a

0 0 0 a a 1

















































ð4Þ

In the simulations, we use p = 100, pg = 10, and pi = 10.
Hence, for simulations each item is associated to pi �
1 = 9 others items (1–2, 1–3, 2–3 in the matrix shown
above). The prime (1) has nine associates and related
prime and target (1 and 2) have eight common asso-
ciates. Related prime and target share a combination of
direct Step 19 (1–2) and indirect Step 28 (1–3–2) rela-
tions. In this scenario, there are only two types of rela-
tionships between items—they either belong to the
same group and then are related together both directly
(Step 1) and indirectly (Step 2), or they are unrelated.

B. Nonoverlapping Groups with Prototypes

In this scenario, items belong to groups of pi items in
which one item (the ‘‘prototype’’) is directly associated
to all of the others, which are not directly associated
with each other (Brunel, Carusi, & Fusi, 1998; Parga &
Virasoro, 1986). In the case p = 6, pg = 2, and pi = 3, the
synaptic matrix is

M ¼

1 a a 0 0 0

a 1 0 0 0 0

a 0 1 0 0 0

0 0 0 1 a a

0 0 0 a 1 0

0 0 0 a 0 1

















































ð5Þ

In the simulations, we use p = 100, pg = 10, and pi = 10.
Simulations with Scenario B enable to discriminate be-
tween Step 11 (2–1), Step 19 relation (1–2), and Step 21

relation between items having one common associate
(2–1–3). In this scenario, there are three types of rela-
tionships between items: (i) direct (Step 1) relationship
between a group member and the ‘‘prototype’’ of the
group; (ii) indirect (Step 2) relationship between two
group members (through the prototype); (iii) no rela-
tionships between members of two different groups.

C. Indirect Relationships through Various
Numbers of Associates

We also use a synaptic matrix in which items can be as-
sociated indirectly through more than one indirect asso-
ciate (Brunel, 1996; Amit et al., 1994; Griniasty, Tsodyks,
& Amit, 1993). In this matrix, each item is again asso-
ciated with pi other items, the synaptic structure is as
follows (shown in the case p = 6 and pi = 2):

M ¼

1 a 0 0 0 a

a 1 a 0 0 0

0 a 1 a 0 0

0 0 a 1 a 0

0 0 0 a 1 a

a 0 0 0 a 1

















































ð6Þ

Again, we use in simulations p = 100 and pi = 10. For
such parameters, there exist Step 110 relations (e.g., 1–2),
Step 2n (where 0 < n < 6) relations (e.g., 1–5–9) and
Step 3, 4,. . . relations (e.g., 1–5–9–13) (Table 1).

Protocol

Experimental protocols used in humans were simulated
in the model to investigate how the wealth of priming
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effects emerges from the dynamics of these intercon-
nected populations. Priming effects were tested accord-
ing to the following experimental protocol: first 50 msec
without any input; then the prime was presented for t1 =
200 msec, followed by variable delay periods td with
no selective input (interstimuli interval). The (variable)
SOA was defined as SOA = t1 + td. Finally, the target
was presented for 200 msec, followed by 50 msec with
no input before the end of trial (Figure 2C).

In the model, a trial begins with the network in a state
of spontaneous activity. When the prime is presented,
the corresponding neuronal population reaches an ele-
vated activity (‘‘visual response’’)—after prime removal,
the excitatory connectivity is strong enough so that these
neurons do not come back to spontaneous activity, but
rather exhibit elevated (retrospective) persistent activ-
ity. The elevated activity of such neurons leads, in turn,
to activation of populations of neurons coding for re-
lated stimuli. Hence, at the time of the presentation
of the target, neuronal populations that code for associ-
ated Step 1 and Step 2 targets exhibit increasing firing
rates corresponding to prospective activity. Recognition
or response times to a given item are usually computed
as proportional to its level of activation in memory
(Randall et al., 2004; Bullinaria, 1995; Masson, 1995; Plaut,
1995; Masson et al., 1991). Electrophysiological studies
have reported that spike rates of neurons coding for a
given response are correlated to response times (Roitman
& Shadlen, 2002). Based on these experimental data,
many modeling approaches take the reaction time to
be the time at which the mean spike rate of a population
of neurons reaches a prescribed threshold (Wong &
Wang, 2006; Wang, 2002), similar to classical diffusion
models of reaction time (Ratcliff, 1978, 2006; Ratcliff,
Gomez, & McKoon, 2004). Then, when a target is pre-

sented to the network, its recognition time Tu is the time
elapsed from target onset to the time at which the mean
firing rate of the corresponding population first crosses a
threshold vu. For a given target, Tu depends on the level
of prospective activity of the neurons population coding
for this target at target onset, itself assumed to depend
on the synaptic matrix and preceding prime. The target
can follow a related (R), unrelated (U), or no (neutral, N)
prime, leading to specific recognition times TR

u, TU
u, and

TN
u, respectively. These response times enable to quantify

the activatory (Equation 7) and inhibitory (Equation 8)
components of priming effects (Equation 9):

PEact ¼ Tu
N � Tu

R ð7Þ

PEinh ¼ Tu
N � Tu

U ð8Þ

with the global priming effect calculated as:

PE ¼ PEactPEinh ð9Þ

RESULTS

When a stimulus is shown to the model network, it
elicits a visual response during its presentation, followed
by persistent activity of the population coding for that
stimulus (see Figure 3A). This activity elicits an increase
in the firing rate of the populations associated to the
stimulus (see Figure 3A), similar to prospective activ-
ity observed in monkey experiments, because of the

Table 1. Parameters of the Model

p Number of selective populations 100

t Time constant of rate dynamics 10 msec

JE Average excitatory synaptic strength 3

JS Strength of synaptic potentiation 3.65

J1 Intrapopulation efficacy JE + JS

a Association strength between associated items Ja�J0

J1�J0
; 0.001–0.02

Ja Synaptic efficacy between populations representing associated items JE þ JS
aðp�piþ1Þ�1

ð1�aÞðpi�1Þþp�pi

J0 Synaptic efficacy between populations representing nonassociated items JE � JS
aðpi�1Þþ1

ð1�aÞðpi�1Þþp�pi

JI Inhibitory synaptic efficacy JE

vu Threshold for reaction time 27 Hz

vS Spontaneous activity 5 Hz

Iext Nonselective external currents set in order to obtain vS = 5 Hz

Isel Selective external currents 0.15
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increased connection strength (as measured by the pa-
rameter a) between these populations. Hence, when the
second stimulus shown is associated to the first through
Step 1 and/or Step 2 associations, the corresponding
population has initially a higher firing rate than if the
first stimulus had not been shown. It then reaches the

threshold for recognition faster: The network exhibits
a large activatory priming effect (Figure 2B) of magni-
tude quantitatively similar to priming reported in human
(i.e., tens of milliseconds). This basic effect is consistent
with reduced reaction times reported in human litera-
ture (see, e.g., Hutchison, 2003; Neely, 1991), prospective

Figure 2. (A) Spike rates of

11 neurons populations

(for clarity, Items 12 to 100 and

inhibitory population are
not displayed) as a function

of time for a = 0.005,

according to Matrix 4 and
to Protocol C: Spontaneous

activity for 50 msec, prime

input for 200 msec (gray area),

variable delay or interstimuli
interval (the case of an ISI of

150 msec is displayed) defining

a variable SOA (prime

duration + ISI), target input
for 200 msec (gray area) and

posttarget delay for 50 msec.

Spike rates are indicated by
gray levels from 0 Hz (white)

to 35 Hz (black). Prime

is encoded by Population 1,

associated items are encoded
by Populations 2 to 10, target is

encoded by Population 2,

and a representative

nonassociated item is
encoded by Population 11.

(B) Spike rates of neurons

populations coding for a prime
(Item 1: thin solid curve) in

different trials where the target

followed a related prime

(Target Item 2 in associated
condition: thick solid curve),

no prime (e.g., Target Item 2

in neutral condition: thick

dashed curve), or an unrelated
prime (Target Item 11 in

nonassociated condition: thick

dotted curve). Vertical lines

indicate response time Tu from
target onset for target

population activity to reach

threshold vu = 27 Hz
(horizontal thin dashed line).

Horizontal black, white, and

gray bars indicate the

magnitude of activatory
(PEact = 49 msec), inhibitory

(PEinh = �13 msec), and

global (PEmain = 62 msec)

priming effects, calculated as
the difference between

reaction times in the related

(TR
u = 73 msec), neutral

(TN
u = 122 msec), and

unrelated (TU
u = 135 msec)

conditions (see Equations 7, 8,

and 9).
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activity observed in neurophysiological experiments on
monkeys (e.g., Sakai & Miyashita, 1991) and previous
modeling studies (e.g., Mongillo et al., 2003).

Priming Effects as a Function of SOA
and Association Strength

In Scenario A (Matrix 4), a given target is related to a
prime through combined direct Step 19 and indirect
Step 28 associations. Figure 3A shows that the magni-
tude of priming effects depends in a pronounced way
on the SOA (Figure 3A) and on the parameter a of asso-
ciation strength (Figure 3B). Conversely, if an unrelated
item is shown first (a stimulus belonging to another cat-
egory), the corresponding population starts with a fir-
ing rate that is below its baseline firing rate because of
the global inhibition. Hence, there is an inhibitory prim-
ing effect that is smaller than activatory priming, but
increases with SOA (Figure 3A) and whose magnitude
again depends on a (Figure 3B).

The fact that activatory effects are larger than inhibi-
tory ones is in accordance with the activation dominance
of priming reported in the literature in humans (Smith
et al., 1987; den Heyer et al., 1985; Favreau & Segalowitz,
1983; Neely, 1977). Furthermore, the model predicts
that the effect becomes only weakly dependent on asso-
ciation strength at long SOAs.

Step 1 vs. Step 2 Priming Effects

The next question we investigate in Scenario B is whether
the magnitude of priming effects depends on step, that

is, the nature of association between prime and target.
We do this by comparing Step 11, Step 19, and Step 21

priming. Scenario B extends simulations by Deco and
Rolls (2005) on the processing of sequences of three
associated items (i.e., Step 21 priming). However, in their
study, only one item was activated at a time so the prime
was deactivated when the target was activated, and
priming could then not depend on the simultaneous
activation of several associates in working memory to
distinguish between different types of step. The present
results show that all types of associations lead to priming
when processed following an associated prime compared
to when following an unrelated prime. The magnitude
of priming increases with SOA (Figure 4A) and associa-
tive strength a (Figure 4B). The asymptotic magnitude
of priming at long SOA decreases with number of asso-
ciates, Step 11 priming being stronger than Step 19

priming that involves the activation of more associates.
This is in accordance with findings of reduced priming
when memory load is increased (Sabb, Bilder, Chou, &
Bookheimer, 2007), suggesting common neural system
resources for priming and working memory. The model
shows that such result can be due to the fact that items
with more associates activated in memory lead to in-
creased inhibition that, in turn, leads to decreased prim-
ing of such associates. Priming magnitude also depends
on the nature (direct or indirect) of the association, Step 1
priming being stronger than Step 2 priming (Figure 4A).
The fact that Step 1 effects are larger than Step 2 can be
easily understood that in Step2, target activation has to
go through the activation of common associates of both
items. This has the consequence that Step 2 priming is

Figure 3. (A) Priming as a function of SOA (Matrix 4). The association strength is a = 0.005. Full curve: Activatory component of priming
effect for associated stimulus (Equation 7). Dashed curve: Inhibitory component of priming effect for unrelated stimulus (Equation 8).

(B) Priming as a function of association strength at short SOAs (400 msec; thin curves) and long SOAs (800 msec; thick curves). Full curves:

Activatory component (Equation 7). Dashed curves: Inhibitory component (Equation 8).
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much weaker at short SOA, and that it increases more
slowly with SOA. In addition, when Step 2 target becomes
activated, the feedback inhibition is stronger because
both the prime and Step 1 target are already activated.
This accounts for lower asymptotic Step 2 priming at long
SOA. Step 2 priming arises at long SOA for all values of a,

and at short SOA for high values of a only (Figure 4B).
When the prime, Step 1, and Step 2 associates are
sufficiently strongly associated and the SOA is long
enough, the three items can activate each other strongly
enough to further increase target activation (e.g., the
timed relation between the sharp transitions visible on

Figure 4. (A) Priming as a function of step and SOA for a = 0.01 (Matrix 5). Red curves: Step 11; black curves: Step 19; green curves: Step 21.
Full curves: Activatory component. Dashed curves: Inhibitory component. (B) Priming as a function of step and association strength at short

SOAs (200 msec; thin curves) and long SOAs (800 msec; thick curves). Red curves: Step 11; black curves: Step 19; green curves: Step 21.

Full curves: Activatory component. Dashed curves: Inhibitory component. Vertical dashed lines correspond to possible values of a accounting

for priming effects in the left (LH) and right (RH) hemispheres (a = 0.007 and a = 0.015 for weak and strong associations in the LH;
a = 0.008 and a = 0.012 for weak and strong associations in the RH).

Figure 5. (A) Step 2n priming as a function of n and SOA for a = 0.01 (Matrix 6). From strongest to weakest effects (black, green, and blue

curves, respectively): Step 110 + Step 28,7,6,5,4 (line thickness decreases with decreasing number of Step 2 associates); Step 23,2,1 and Step 3

relations. (B) Step 2n priming as a function of n and a at 400 msec SOAs. From strongest to weakest effects: Step 110 + Step 28,7,6,5,4; Step 23,2,1

and Step 3 relations. Vertical dashed lines correspond to possible values of a accounting for effects in the left (LH) and right (RH)
hemispheres (same values as in Figure 4).
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the red and green curves for a = 0.01 and long SOAs).
At short SOAs, even though Step 2 effects are weak they
are, nonetheless, present, and therefore the present
model accounts for the possibility reported in the ex-
perimental literature in humans of an early onset of
Step 2 priming (Yochim, Kender, Abeare, Gustafson, &
Whitman, 2005; Kiefer et al., 1998; Richards & Chiarello,
1995).

Divided visual field experiments have pointed to the
importance of the direct associative strength on Step 1
priming in the right visual field–left hemisphere (RVF–
LH) and in the left visual field–right hemisphere (LVF–
RH) (see Chiarello et al., 2003, for a review). At short
SOA, Step 1 priming is reported when both hemispheres
are involved (Frishkoff, 2007; Hutchinson, Whitman,
Abeare, & Raiter, 2003), or when the RVF–LH is primarily
involved (Bouaffre & Faita-Ainseba, 2007) more reliably
on strong associates (Yochim et al., 2005; Coney, 2002;
Abernethy & Coney, 1993; Nakagawa, 1991). Trends for
priming of strong associates are reported when the
LVF–RH is primarily involved (Hutchinson et al., 2003;
but see Nakagawa, 1991). Priming of weak associates
at short SOA is reported when primes are presented to
the LVF–RH (Hutchinson et al., 2003), and weaker than
priming of strong associates when both hemispheres
are involved (Frishkoff, 2007; Coney, 2002). Turning
to long SOAs, Step 1 priming effects are reported to in-
volve both hemispheres (Khateb et al., 2003) stronger
on strong associates (Frishkoff, 2007; Coney, 2002;
Abernethy & Coney, 1993; Nakagawa, 1991; but see
Hutchinson et al., 2003 for an absence of effect when
both prime and targets are presented to the RVF–LH).
At long SOA, priming of weak associates is reported when
solely the LVF–RH is involved (Hutchinson et al., 2003),
weaker than priming of strong associates when reported
in both hemispheres (Frishkoff, 2007; Coney, 2002). Re-
garding Step 2 priming, it is reported at short SOA when
both hemispheres are involved, although smaller than
Step 1 priming (Yochim et al., 2005; Kiefer et al., 1998;
see Richards & Chiarello, 1995 for right hemisphere
effects when primes are centrally presented) and less
reliably when only one hemisphere is primarily involved
(Yochim et al., 2005). At long SOAs, Step 2 priming is
reported as equivalent to Step 1 priming from primes
in the LVF–RH, and weaker from primes in the RVF–LH
(Yochim et al., 2005; Richards & Chiarello, 1995). Taken
as a whole, these hemispheric differences in seman-
tic priming effects have been described as ‘‘fine’’ or
focused semantic coding in the left hemisphere, in which
strong Step 1 associates are activated, and ‘‘coarse’’ or
extended semantic coding in the right hemisphere, in
which strong and weak Step 1 and Step 2 associates
are activated (Beeman, Bowden, & Gernsbacher, 2000;
Beeman, Friedman, Grafman, & Perez, 1994; see Chiarello
et al., 2003; Beeman & Chiarello, 1998).

Differential hemispheric priming of weak and strong
associations can be accounted for in our model through

different values of the association strength a: extreme
values of a in the left hemisphere (a = 0.007 and a =
0.015), and intermediate values of a in the right hemi-
sphere (a = 0.008 and a = 0.012) (Figure 4B). Results
obtained with such values of a in the case of Step 1
priming (black curves) are consistent with effects re-
ported in the literature when one hemisphere is pri-
marily addressed. At short SOA, Step 1 priming is larger
in the left hemisphere than in the right hemisphere
on strong associates, and larger in the right hemisphere
than in the left hemisphere on weak associates. At
long SOA, Step 1 priming arises in both hemispheres
on strong associates, and is stronger in the right hemi-
sphere on weak associates. Relative to Step 2 priming,
the mean field model exhibits Step 2 priming (green
curves) in the right hemispheres for all association
strengths, and in the left hemisphere for strong associa-
tions only. This supports the hypothesis that differential
synaptic potentiation can account for differential se-
mantic coding in the hemispheres. Although association
strength has not been manipulated in experiments test-
ing for Step 2 priming, the model predicts that the re-
spective increases of Step 1 and Step 2 priming with SOA
should depend markedly on a.

Step 2n Priming Effects

Scenario C (Matrix 6) permits us to investigate the ques-
tion of how the number of shared associates influences
the magnitude of Step 2n priming. Results show increas-
ing magnitude of priming effects with SOA for Step 1
as well as Step 2. However, priming effects depend
strongly on the type of prime–target relationship, espe-
cially at short SOAs: They are much stronger for Step 1
than Step 2; and they are also stronger when the
number of common associates n is large (Figure 5A).
At long SOAs, priming effects reach a maximum inverse-
ly proportional to the number of steps, and proportional
to n for Step 2n relations (McRae et al., 1999; see
Fischler, 1977). Indeed, n determines the amount of
activation received by a target—The larger the n, the
larger its prospective activity. These results are in accor-
dance with the literature on Step 2n priming (Sanchez-
Casas et al., 2006; Grose-Fifer & Deacon, 2004). In
addition, for all types of steps, the magnitude of priming
effects is proportional to the association strength a
(Figure 5B), whose effect is larger at short than at long
SOAs (Figure 5A). Step 3 associates can also be primed
(McNamara, 1992) for high values of a, but remote as-
sociates are reported as inhibited at long SOAs in the
left hemisphere (see Ince & Christman, 2002; Nakagawa,
1991). The model shows that for low values of a both
Step 2 and Step 3 remote associates can be inhibited,
which would correspond to left hemisphere process-
ing (Figure 5B, thin green and blue curves). This is due
to the fact that Step 1 items are directly activated by the
prime and reach enough activation to trigger inhibitory

Brunel and Lavigne 2309



feedback. The model predicts the possibility for inhibi-
tion of Step 3 associates for low values of a corresponding
to right hemisphere processing. To our knowledge, step
and association strength have not been cross-manipulated
in the experimental literature. Their synergistic effects
can therefore be considered as an experimental predic-
tion of the model.

Divided visual field experiments have shown that
the effect of overlap (number of shared associates) on
Step 2n priming strongly depends on the cerebral hemi-
sphere primarily involved. At short SOAs, Step 2n prim-
ing occurs more reliably in the RVF–LH (Korsnes &
Magnussen, 2007; Collins, 1999; Koivisto, 1997, 1998;
Abernethy & Coney, 1990, 1996) than in the LVF–RH
(Bouaffre & Faita-Ainseba, 2007; Koivisto, 1998), for
which it is reported between strongly but not weakly
overlapping co-exemplars (Grose-Fifer & Deacon, 2004).
Step 2n priming is also reported at long SOAs (Rossell,
Price, & Nobre, 2003; Hines, Czerwinski, Sawyer, &
Dwyer, 1986; Flores d’Arcais, Schreuder, & Glazenborg,
1985; Lupker, 1984; Seidenberg, Waters, Sanders, &
Langer, 1984; Huttenlocher & Kubicek, 1983; see also
McKoon & Ratcliff, 1992), the effect being larger on strongly
than on weakly overlapping co-exemplars (McRae &
Boisvert, 1998; Hines et al., 1986). It is reported in both
the LVF–RH (Collins, 1999; Koivisto & Laine, 1999; Koivisto,
1997; Chiarello & Richards, 1992; Chiarello, Richards, &
Pollock, 1992; Chiarello, Burgess, Richards, & Pollock,
1990; see Shears & Chiarello, 2003) and the RVF–LH
(Khateb et al., 2003; Shears & Chiarello, 2003; Koivisto
& Hamalainen, 2002; Koivisto & Revonsuo, 2000; Koivisto
& Laine, 1999; Koivisto, 1998; Abernethy & Coney, 1996;
Chiarello et al., 1992), for which a tendency for prim-
ing effects between strongly overlapping co-exemplars
only is reported (Chiarello & Richards, 1992).

Differential Step 2n priming effects in the two hemi-
spheres can be accounted for by the model in Scenario C
through different values of a in the two hemispheres in
a similar way as in Scenario B (compare Figures 4B and
5B). Experimental studies testing for the effect of over-
lap n in humans do not manipulate the association
strength a. However, the model predicts that the effect
of n highly depends on a. Step 2n priming effects are
stronger in the LVF–RH for weak values of a and stronger
in the RVF–LH for strong values of a (Figure 5B). Differ-
ences in priming effects of strong and weak associates
decrease with SOA (Figure 5A). The experimental litera-
ture also reports that Step 2n priming is stronger when
combined with Step 1 priming than when involved solely
(see Lucas, 2000). Such associative boost is also reported
as a necessary condition for Step 2n priming to occur
(Abad, Noguera, & Ortells, 2003; Williams, 1996; Shelton
& Martin, 1992). Association strength would then be a
critical parameter inf luencing combined Step 1 and
Step 2n priming effects, reported in both hemispheres
at short and long SOAs (Audet, Driessen, & Burgess, 1998;
Chiarello et al., 1992), although later in the LVF–RH

(Chiarello et al., 1992). Simulations results show that
both cases are possible depending on SOA (Compare
green and black curves in Figure 5A) and on the value of
association strength a (compare again green and black
curves in Figure 5B). For strong values of a, Step 2n

priming occurs solely and increases when combined
with Step 1 priming. For weak values of a, Step 2n prim-
ing does not occur solely and requires combination with
Step 1 priming.

DISCUSSION

The present article shows that a cortical network mod-
el that reproduces electrophysiological data in mon-
keys can account, qualitatively and also quantitatively,
for priming effects reported in humans. The novelty of
the model is to account for priming effects in humans
in terms of parameters (like the time constant of fir-
ing rate dynamics or the f–I curve) that can be related
to the biophysics of cortical neurons. Priming effects
emerge from the dynamics of simultaneously activated
and interacting neuronal populations coding items
stored in memory, which are shaped by the synaptic
structure that encodes the semantic relationships be-
tween the items. The mathematical model presented
here accounts for priming effects as a function of the
level of prospective activity of neuronal populations, in-
fluencing the response time at which its activity reaches
a given threshold. Priming effects are due to activation
of the target-related neurons by prime-related neurons
after presentation of the prime, similar to the observed
prospective activity in monkey experiments. The results
shown in this article have been obtained with a simple
rate model. These results are robust to changes in pa-
rameters of the model, provided synaptic connectivity
is chosen such as both spontaneous and selective states
are stable. The rate model is clearly an oversimplifica-
tion of the dynamics of populations of real neurons, but
it has been shown in some instances to reproduce
qualitatively the dynamics of networks of more realistic
Hodgkin–Huxley neurons (see e.g., Roxin, Brunel, &
Hansel, 2005). Preliminary simulations with networks
of leaky integrate-and-fire neurons show qualitatively
similar results (Lavigne & Darmon, 2008). The choice of
three simple matrices permitted to clearly analyze and
disentangle the various types of priming effects. It was
not a necessary condition for the effects to arise for our
results are robust to the details of the synaptic matrix:
For instance, the difference in priming effects between
direct and indirect relationships are qualitatively similar
in Matrices B and C (Compare Figures 5 and 6). The ro-
bustness of priming effects to local changes in the synap-
tic matrix is also supported by a model of integrate and
fire neurons using a single ‘‘unified’’ matrix encoding
various types of relationships (Lavigne & Darmon, 2008).
Then, Matrices A, B, and C can be considered as local
synaptic structures encoding ‘‘local’’ semantic fields that
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are part of a larger matrix encoding a whole set of se-
mantic fields. A local semantic field would be defined by
a set of items more associated together than with other
items. Such heterogeneous connectivity guaranties that
when a local structure is involved in a priming effect, that
is, when the corresponding neuron populations are
activated at a level above spontaneous activity, corre-
sponding to visual response, retrospective activity, and
prospective activity, the resulting increase in inhibitory
feedback prevents runaway excitation to propagate to
remote local fields. Remote neuron populations are
then weakly activated at the level of spontaneous activ-
ity or even inhibited (see Figure 5) and do not signifi-
cantly modify ongoing priming effects.

The cortical network model exhibits working mem-
ory activation of simultaneous neuronal populations in
stable attractor states (Lavigne, 2004; Amit et al., 2003;
Haarmann & Usher, 2001; Brunel, 1996), depending on
the ratio of activation/inhibition received by activated
neuronal populations (Brunel, 1996). A working mem-
ory capacity of several items (Cowan, 2001; Luck & Vogel,
1997) is necessary for step priming involving a prime,
several step associates, and a target. Prospective activity
of items associated to a prime stimulus has been reported
in several areas: in prefrontal (Rainer et al., 1999), in-
ferotemporal and perirhinal cortices (Naya, Yoshida,
& Miyashita, 2003; Naya, Yoshida, Takeda, et al., 2003;
Yoshida et al., 2003; Naya et al., 2001; Erickson & Desimone,
1999; Sakai & Miyashita, 1991; see Buckley & Gaffan, 1998a,
1998b; Murray, Baxter, & Gaffan, 1998). Likewise, seman-
tic processing in humans has been observed in frontal cor-
tex (Gough, Nobre, & Devlin, 2005; Khateb et al., 2003)
and in the anterior temporal lobe (Mummery, Shallice, &
Price, 1999; Nobre & McCarthy, 1995; Nobre, Allison, &
McCarthy, 1994; see Henson, 2003). This suggests that
the neuronal substrate for priming in humans involves
widespread cortical areas including prefrontal and tem-
poral networks.

Priming Dynamics

The cortical network model exhibits priming effects
whose magnitudes are quantitatively similar to the ones
reported in human studies. These priming effects are cal-
culated on the basis of threshold crossing times of neu-
rons spike rates whose amplitude is similar to the one
reported in monkey studies. The dynamics of priming
effects emerge from those of neurons populations deter-
mined by a biologically realistic I–f (current-to-frequency)
transfer function. This enables the model to account si-
multaneously for three dynamical features reported in
the literature: effects arising at short SOA (Neely, 1976,
1977; see Valdes, Catena, & Mari-Beffa, 2005, for a dis-
cussion); effects that are sustained at long SOAs (Deacon
et al., 1999; Stern, Prather, Swinney, & Zurif, 1991; Neely,
1977); and effects arising at long SOAs only (Deacon et al.,
1999; Neely, 1976, 1977; see Neely, 1991 for a review).

Such effects are usually reported to depend on quali-
tatively different, although nonexclusive, time-dependent
processes of rapid automatic activation producing fa-
cilitation, followed by slower inhibition producing selec-
tion (Rossell et al., 2003; Rossell, Bullmore, Williams, &
David, 2001; Mummery et al., 1999; Neely, 1977, 1991;
Keefe & Neely, 1990; Neely et al., 1989; see Posner &
Snyder, 1975) as a function of an SOA boundary esti-
mated in humans at about 300 msec (Hutchison, Neely,
& Johnson, 2001; see also Burke, White, & Diaz, 1987).
The present results show that short SOAs lead to rapid
activation of directly related items, together with rapid
inhibitory regulation of the level of activation. At long
SOAs, already activated items sustain their activation,
and indirectly and/or weakly related items become acti-
vated on a slower time scale. The increasing global level
of excitation at long SOAs leads to a slowly increasing
inhibitory feedback induced by coactivation of several
populations. Interestingly, this effect determines a limit
to the number of coactive populations (Amit et al., 2003)
and has been proposed to explain the short-term mem-
ory capacity limit (Haarmann & Usher, 2001). In the pres-
ent model, slowly increasing inhibitory feedback is able
to reduce the level of activation of already activated
populations, and to inhibit neuronal populations encod-
ing for items not related to the prime (when compared
to a baseline in absence of prime). This model can then
account for priming effects as a function association
strength and type of relation (direct or indirect) on the
basis of combined excitation and inhibition that are
both automatic and rapid at the neuronal level. Such
neuronal mechanisms subtend rapid facilitatory effects
between associated items and slower inhibitory effects
of leading to deactivation or infrabaseline inhibition of
items at the network level, depending on the synaptic
structure. In the model described here (see also Plaut
& Booth, 2000), slow inhibition does not involve con-
trolled processes such as proposed at long SOAs (e.g.,
Neely, 1977, 1991), although controlled processes should
be taken into account in further development of the
model to account for more complex priming effects.

There is a debate in the literature between prelexical
and postlexical accounts of priming effects. Prelexical
activation of the target by the prime, that is, occurring
before presentation of the target, is supported by neuro-
physiological data in monkeys reporting prospective
activity of one (e.g., Sakai & Miyashita, 1991; Miyashita,
1988) to several (Wallis & Miller, 2003) associated ob-
jects in memory, and by behavioral data in humans from
studies on subliminal priming where either the prime
(e.g., Draine & Greenwald, 1998; Greenwald, Draine, &
Abrams, 1996) or the target (e.g., Lavigne, Vitu, &
d’Ydewalle, 2000) is processed without awareness. It
would then not allow conscious postlexical semantic
matching processes between the prime and the target,
that is, occurring after presentation of the target (Dosher
& Rosedale, 1989; Neely et al., 1989; Ratcliff & McKoon,
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1988; see Lavigne & Lavigne, 2000; Neely, 1991 for dis-
cussions). In the present study, prelexical semantic prim-
ing is based on prospective activity of neurons coding
for a target that is not yet presented. From a theoretical
point of view, this corresponds to an anticipatory activa-
tion of concepts in memory on the basis of information
(i.e., the prime) actually presented and previously pro-
cessed. Such anticipations can be considered as prob-
abilistic in the sense that the amount of prelexical activity
depends on synaptic strength between populations cod-
ing for the prime and the target, and that synaptic
strength is a learned parameter depending on the prob-
ability of occurrence of the prime and the target close
in a time sequence. The benefit of prospective activity
could then make the system reading for perceptive pro-
cessing or motor response as visible on shortened re-
sponse times on anticipated targets (e.g., Lavigne, 2004).
Although different, pre- and postlexical processes are
not mutually exclusive. The network model proposed
here accounts for a variety of semantic priming effects
mainly on the basis of prelexical processes that involve
prospective activity of several neurons populations cod-
ing for several associates to the prime instead of only
one population coding for a single associated target as
in monkey studies. In addition, postlexical processes are
also involved automatically as backward effects of the
target on the prime–target pair during target processing.
Again, these effects do not involve attentional control,
and further developments are required to account for
factors influencing pre- versus postlexical priming, such
as the ratio of related pairs (e.g., Keefe & Neely, 1990),
experimental task (e.g., Neely, 1991), and lexical ambi-
guity (e.g., Lucas, 1999).

Semantic Structure in Memory

The cortical network model gives a unified account a
variety of priming effects observed experimentally in
humans by scanning a wide range of values for several
relevant parameters such as associations strength and
SOA, and for Step 1 priming (e.g., Hutchison, 2003),
Step 2 priming (e.g., Hutchison, 2003, Table 2, p. 792;
McNamara & Altarriba, 1988), Step 2n priming (e.g.,
Lucas, 2000), and Step 3 priming (Chwilla & Kolk, 2002;
McNamara, 1992). The model can exhibit these effects
for variables a, SOA, step, and n in combination or
independently of each other. In the light of these re-
sults, it seems worth discussing the two views of the
semantic structure of concepts in memory that have be-
come a central issue in the semantic priming literature
(see Hutchison, 2003 for a discussion). Some authors
propose localist models of priming effects based on di-
rect associations between concepts encoded by distinct
‘‘units’’ (the ‘‘association-based’’ view: Anderson, 1976,
1983a, 1983b; Collins & Loftus, 1975). Other authors as-
sume that priming effects are due to overlapping con-
cepts sharing ‘‘units’’ (the ‘‘feature-based’’ view: McRae

& Ross, 2004; Cree & McRae, 2003; Masson, 1995, 1991;
Plaut, 1995; Moss et al., 1994). However, normative data
from production norms, used to measure association-
based or feature-based relations between concepts, quan-
tify associations and feature overlap on the sole basis of
verbalizable words without a priori distinction between
concepts and features of concepts (Barsalou, 1999;
McRae et al., 1997). This raises methodological issues
to assess the involvement of direct association or of fea-
ture overlap in the semantic organization of concepts
(Cree & McRae, 2003; Moss et al., 1994). The association-
based view assumes that concepts and features are coded
in the same (localist) way in a network. Although
this view can easily account for Step>1 priming through
the simultaneous activation of several concept units, it
does not account for the wide distribution of concept
coding across brain regions and the conceptual units
are not related to the biophysics of actual neurons. The
feature-based view is based on models of concepts that
are distributed patterns of activated/inhibited features.
Although current distributed models account for the dis-
tributed coding of concepts across brain regions, they
describe distributed concepts in terms of combinations
of localist features (see McRae et al., 1999). The result-
ing problems are the a priori labeling and attribution of
features to concepts, and the learning of associations be-
tween features and concepts that are coded differently.
Plaut and Booth (2000) addressed this issue using an
extension of the Plaut (1995) model that dissociates
the lexical and semantic levels of representation in differ-
ent layers of neurons. This model can learn to associate
localist features to distributed concept. However, it still
makes strong assumptions on the different coding of
features and concepts and on the a priori defined net-
work architecture regarding concepts and features. In
the model proposed here, the architecture and distrib-
uted coding of the types of semantic relations between
concepts and/or features are defined in agreement with
known data from animal studies on cortical networks
architecture, and are assumed to follow from classical
Hebbian learning.

Direct associations between items are presumably
learned in monkeys on the basis of temporal contiguity
(Booth & Rolls, 1998; Yakovlev, Fusi, Berman, & Zohary,
1998; Sakai & Miyashita, 1991; Stryker, 1991; Miyashita,
1988). Consistent with this hypothesis, priming effects
in humans are proportional to the lexical distance and
frequency of co-occurrence between words encountered
in texts (Spence & Owens, 1990; Postman & Keppel,
1970; Deese, 1965; see Prior & Bentin, 2003, 2008). In
network models with unsupervised Hebbian learning,
synaptic potentiation between neurons coding for two
items is proportional to the number of temporally con-
tiguous occurrences of these items (Mongillo et al.,
2003; Brunel, 1996) leading to synaptic matrices which
are qualitatively similar to the ones used here. In the
cortical network model, coded items are assumed to
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be learned according to a biologically realistic Hebbian
rule and distributed across neuronal populations, un-
like in distributed connectionist models using back-
propagation algorithms. Hebbian learning does not
require a priori attribution of concept or feature labels
within a single semantic structure, nor any assump-
tion on their modality and lexical representation (see
Hutchison, 2003; Khateb et al., 2003; Lorch, 1982). The
present research gives new insights on the link between
the two main views of concept coding by accounting
for experimental data using associations underlying
both associative and category priming. We emphasize
here that nonoverlapping populations have been chosen
here for the sake of simplicity and under the assumption
that neuronal coding is sparse (Booth & Rolls, 1998). A
model with concepts encoded by random subsets of
neurons would generate overlaps between concepts
that would not change qualitatively the effects observed
here (Romani, Amit, & Mongillo, 2006; Curti, Mongillo,
La Camera, & Amit, 2004). In cortical network models,
overlaps are then possible between populations of neu-
rons coding for either concepts or features, and shared
neurons do not need to be a priori labeled by explicit
semantic feature to generate semantic relations be-
tween concepts.

Synaptic Effects on Semantic Coding

Results of the mean field model give a coherent picture
of synaptic effects on ‘‘fine’’ focused coding in the left
hemisphere and ‘‘coarse’’ extended coding in the right
hemisphere (Chiarello et al., 2003; Beeman et al., 1994,
2000; Beeman & Chiarello, 1998; Bowden & Beeman,
1998; Beeman, 1993; Chiarello, 1988). Given that synap-
tic values underlying association strengths of strong
and weak associates in the left and right hemispheres
are not known, we have described priming effects for
ad hoc values of the strengths of weak and strong asso-
ciates in the left and right hemispheres. This provides
support for the hypothesis that differential hemispheric
synaptic strengths, assumed to rely on differential learn-
ing, can account for differential priming in the two hemi-
spheres. When regarding priming of strong and weak
associates, extreme upper and lower values of a account
for ‘‘focused’’ priming in the RVF–LH that strongly
activates small semantic fields of strong rather than weak
Step 1 associates. Intermediate values of a account for
‘‘extended’’ priming in the LVF–RH that weakly activates
large semantic fields of Step 1 and Step 2 associates.
Both hemispheres would then contribute to semantic
processing, though in different ways; the left hemi-
sphere would be more involved in processing of dom-
inant and context-specific information (Hutchinson
et al., 2003), whereas the right hemisphere would be
more involved in integrating large discourse representa-
tions (e.g., McDonald, 2000; Kaplan, Brownell, Jacobs,

& Gardner, 1990) such as metaphors (e.g., Brownell,
Simpson, Bihrle, Potter, & Gardner, 1990) and subordinate
associates to ambiguous words (e.g., Atchley, Burgess,
& Keeney, 1999; Atchley, Keeney, & Burgess, 1999). Syn-
aptic effects tested with the mean field model predict
increased contrast between priming of strong versus
weak Step 1 associates in the left hemisphere, through
combined reduced priming of weak associates and in-
creased priming of strong associates. The model can also
specifically account for stronger Step 2 priming in the
LVF–RH than in the RVF–LH (Yochim et al., 2005; Richards
& Chiarello, 1995) in the case of weak associations. Pre-
dictions of the model may help conducting further neu-
rophysiological experiments in monkeys, where precise
learning protocols could allow testing for the effects of
synaptic strength and step on the dynamics of semantic
priming in the two hemispheres. Hemispheric differences
in semantic priming have been linked to asymmetries in
cortical microcircuitry of language areas (Jung-Beeman,
2005; see Hutsler & Galuske, 2003). The right hemisphere
has been reported to involve broader connection fields
between pyramidal neurons and more branching and
dendritic spines, associated with broader overlapping be-
tween more densely connected cortical areas than in the
left hemisphere (Galuske, Schlote, Bratzke, & Singer,
2000). Alternatively, differential levels of dopamine in the
two hemispheres (Slopsema, Van Der Gugten, & De Bruin,
1982) could also lead to hemispheric differences in se-
mantic priming (Lavigne & Darmon, 2008), as L-dopa is
reported to change the magnitude of priming in healthy
subjects (Roesch-Ely et al., 2006; Kischka et al., 1996). Un-
balanced hemispheric lateralization reported in schizo-
phrenic patients (Spitzer et al., 1993) could be linked to
disordered semantic priming (Moritz et al., 2001, 2003;
Spitzer et al., 1993; Manschreck et al., 1988), proposed
as possibly depending on unusual levels of cortical dopa-
mine (Kischka et al., 1996; Spitzer et al., 1993; see Abi-
Dargham et al., 2002).

Conclusion

The present article identified mechanisms at the network
level which could be responsible for priming dynamics.
The results account for a large variety of priming effects
and for the modulation of their magnitude as a function
of synaptic strength. The model makes also a number
of predictions that could be tested in behavioral experi-
ments: the effects of association strength on Step 2
priming; the effects of the number of associates to the
prime; the effects of the number of common associates,
and the activation/inhibition ratio, in divided visual field
experiments. Further developments of the model could
then help better understand the interactions between
several networks differing at the neuronal and synaptic
level and involving different types of semantic structures
and priming processes in memory.
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facilitation sémantique. L’année Psychologique,
83, 39–52.

Becker, C. A. (1980). Semantic context effects in visual word
recognition: An analysis of semantic strategies. Memory
& Cognition, 8, 493–512.

Becker, S., Moscovitch, M., Behrmann, M., & Joordens, S.
(1997). Long-term semantic priming: A computational
account and empirical evidence. Journal of Experimental
Psychology: Learning, Memory, and Cognition,
23, 1059–1082.

Beeman, M. (1993). Semantic processing in the right
hemisphere may contribute to drawing inferences from
discourse. Brain and Language, 44, 80–120.

Beeman, M., & Chiarello, C. (1998). Right hemisphere
language comprehension: Perspectives from cognitive
neuroscience. Mahwah, NJ: Erlbaum.

Beeman, M., Friedman, R. B., Grafman, J., & Perez, E. (1994).
Summation priming and coarse semantic coding in the
right hemisphere. Journal of Cognitive Neuroscience,
6, 26–45.

Beeman, M. J., Bowden, E. M., & Gernsbacher, M. A.
(2000). Right and left hemisphere cooperation for drawing
predictive and coherence inferences during normal story
comprehension. Brain and Language, 71, 310–336.

Bennett, D. J., & McEvoy, C. L. (1999). Mediated priming in
younger and older adults mediated priming in younger
and older adults. Experimental Aging Research, 25,
141–159.

Booth, M. C. A., & Rolls, E. T. (1998). View-invariant
representations of familiar objects by neurons in the
inferior temporal visual cortex. Cerebral Cortex, 8, 510–523.

Bouaffre, S., & Faita-Ainseba, F. (2007). Hemispheric
differences in the time-course of semantic priming
processes: Evidence from event-related potentials (ERPs).
Brain and Cognition, 63, 123–135.

Bowden, E. M., & Beeman, M. J. (1998). Getting the right
idea: Semantic activation in the right hemisphere may
help solve insight problems. Psychological Science, 9,
435–440.

Brodeur, D. A., & Lupker, S. J. (1994). Investigating the
effects of multiple primes: An analysis of theoretical
mechanisms. Psychological Research/Psychologische
Forschung, 57, 1–14.

Brownell, H. H., Simpson, T. L., Bihrle, A. M., Potter, H. H.,
& Gardner, H. (1990). Appreciation of metaphoric
alternative word meanings by left and right brain-damaged
patients. Neuropsychologia, 28, 375–383.

Brunel, N. (1996). Hebbian learning of context in recurrent
neural networks. Neural Computation, 8, 1677–1710.

Brunel, N. (2004). Network models of memory. In C. Chow,
B. Gutkin, D. Hansel, C. Meunier, & J. Daliard (Eds.),
Methods and models in neurophysics. Paris: Les Houches.

2314 Journal of Cognitive Neuroscience Volume 21, Number 12



Brunel, N., Carusi, F., & Fusi, S. (1998). Slow stochastic
Hebbian learning of classes in recurrent neural networks.
Network: Computation in Neural Systems, 9, 123–152.

Brunel, N., & Latham, P. E. (2003). Firing rate of the
noisy quadratic integrate-and-fire neuron. Neural
Computation, 15, 2281–2306.

Brunel, N., & Wang, X.-J. (2001). Effects of neuromodulation
in a cortical network model of object working memory
dominated by recurrent inhibition. Journal of
Computational Neuroscience, 11, 63–85.

Buckley, M. J., & Gaffan, D. (1998a). Learning and transfer
of object–reward associations and the role of the perirhinal
cortex. Behavioral Neuroscience, 112, 15–23.

Buckley, M. J., & Gaffan, D. (1998b). Perirhinal cortex
ablation impairs configural learning and paired-associate
learning equally. Neuropsychologia, 36, 535–546.

Bullinaria, J. A. (1995). Modelling lexical decision: Who needs
a lexicon? In J. G. Keating (Ed.), Neural computing
research and applications III (Proceedings of the Fifth
Irish Neural Networks Conference) (pp. 62–69). Maynooth,
Ireland: St. Patrick’s College.

Burke, D. M., White, H., & Diaz, D. L. (1987). Semantic
priming in young and older adults: Evidence for age
constancy in automatic and attentional processes.
Journal of Experimental Psychology: Human Perception
and Performance, 13, 79–88.

Chiarello, C. (1988). Semantic priming in the intact brain:
Separate roles for the right and left hemispheres?
In C. Chiarello (Ed.), Right hemisphere contribution
to lexical semantics (pp. 59–69). Heidelberg:
Springer-Verlag.

Chiarello, C., Burgess, C., Richards, L., & Pollock, A.
(1990). Semantic and associative priming in the cerebral
hemispheres: Some words do, some words don’t . . .
sometimes, some places. Brain and Language,
38, 75–104.

Chiarello, C., Liu, S., Shears, C., Quan, N., & Kacinik, N.
(2003). Priming of strong semantic relations in the left
and right visual fields: A time-course investigation.
Neuropsychologia, 41, 721–732.

Chiarello, C., & Richards, L. (1992). Another look at categorical
priming in the cerebral hemispheres. Neuropsychologia,
30, 381–392.

Chiarello, C., Richards, L., & Pollock, A. (1992). Semantic
additivity and semantic inhibition: Dissociable processes
in the cerebral hemispheres? Brain and Language,
42, 52–76.

Chwilla, D. J., & Kolk, H. H. J. (2002). Three-step priming
in lexical decision. Memory & Cognition, 30, 217–225.

Chwilla, D. J., Kolk, H. H. J., & Mulder, G. (2000). Mediated
priming in the lexical decision task: Evidence from
event-related potentials and reaction time. Journal of
Memory and Language, 42, 314–341.

Collins, A. M., & Loftus, E. F. (1975). A spreading-activation
theory of semantic processing. Psychological Review,
82, 407–428.

Collins, A. M., & Quillian, M. R. (1969). Retrieval time from
semantic memory. Journal of Verbal Learning and
Verbal Behavior, 8, 240–247.

Collins, M. (1999). Differences in semantic category priming
in the left and right cerebral hemispheres under automatic
and controlled processing conditions. Neuropsychologia,
37, 1071–1085.

Coney, J. (2002). The effect of associative strength on priming
in the cerebral hemispheres. Brain and Cognition, 50,
234–241.

Cowan, N. (2001). The magical number 4 in short-term
memory: A reconsideration of mental storage

capacity. Behavioural Brain Sciences, 24, 87–114;
discussion 114–185.

Cree, G. S., & McRae, K. (2003). Analyzing the factors
underlying the structure and computation of the meaning
of chipmunk, cherry, chisel, cheese, and cello (and many
other such concrete nouns). Journal of Experimental
Psychology: General, 132, 163–201.

Cree, G. S., McRae, K., & McNorgan, C. (1999). An attractor
model of lexical conceptual processing: Simulating semantic
priming. Cognitive Science, 23, 371–414.

Curti, E., Mongillo, G., La Camera, G., & Amit, D. J. (2004).
Mean field and capacity in realistic networks of spiking
neurons storing sparsely coded random memories.
Neural Computation, 16, 2597–2637.

de Groot, A. M. B. (1983). The range of automatic spreading
activation in word priming. Journal of Verbal Learning
and Verbal Behavior, 22, 417–436.

de Groot, A. M. B., & Nas, G. L. J. (1991). Lexical representation
of cognates and noncognates in compound bilinguals.
Journal of Memory and Language, 30, 90–123.

de Mornay Davies, P. (1998). Automatic semantic priming:
The contribution of lexical- and semantic-level processes.
European Journal of Cognitive Psychology, 10,
389–412.

Deacon, D., Uhm, T.-J., Ritter, W., Hewitt, S., & Dynowska, A.
(1999). The lifetime of automatic semantic priming effects
may exceed two seconds. Cognitive Brain Research, 7,
465–472.

Deco, G., & Rolls, E. T. (2005). Attention, short-term memory,
and action selection: A unifying theory. Progress in
Neurobiology, 76, 236–256.

Deese, J. E. (1965). The structure of associations in
language and thought. Baltimore, MD: Johns Hopkins Press.

den Heyer, K., Briand, K., & Smith, L. (1985). Automatic
and strategic effects in semantic priming: An examination
of Becker’s verification model. Memory & Cognition,
13, 228–232.

Dosher, B. A., & Rosedale, G. (1989). Integrated retrieval
cues as a mechanism for priming in retrieval from memory.
Journal of Experimental Psychology: General, 118, 191–211.

Draine, S. C., & Greenwald, A. G. (1998). Replicable
unconscious semantic priming. Journal of
Experimental Psychology: General, 127, 286–303.

Erickson, C. A., & Desimone, R. (1999). Responses of
macaque perirhinal neurons during and after visual
stimulus association learning. Journal of Neuroscience,
19, 10404–10416.

Favreau, M., & Segalowitz, N. S. (1983). Automatic and
controlled processes in the first- and second-language
reading of fluent bilinguals. Memory & Cognition,
11, 565–574.

Fischler, I. (1977). Semantic facilitation without association in
a lexical decision task. Memory & Cognition, 5, 335–339.

Flores d’Arcais, G. B., Schreuder, R., & Glazenborg, G. (1985).
Semantic activation during recognition of referential
words. Psychological Research, 47, 39–49.

Fowler, C. A., Wolford, G., Slade, R., & Tassinary, L. (1981).
Lexical access with and without awareness. Journal
of Experimental Psychology: General, 110, 341–362.

Frenck-Mestre, C., & Bueno, S. (1999). Semantic features
and semantic categories: Differences in rapid activation
of the lexicon. Brain and Language, 68, 199–204.

Frishkoff, G. A. (2007). Hemispheric differences in strong
versus weak semantic priming: Evidence from
event-related brain potentials. Brain and Language,
100, 23–43.

Fuster, J. M. (2001). The prefrontal cortex—An update:
Time is of the essence. Neuron, 30, 319–333.

Brunel and Lavigne 2315



Fuster, J. M., & Alexander, G. E. (1971). Neuron activity related
to short-term memory. Science, 173, 652–654.

Galuske, R. A., Schlote, W., Bratzke, H., & Singer, W. (2000).
Interhemispheric asymmetries of the modular structure
in human temporal cortex. Science, 289, 1946–1949.

Gonnerman, L. M., Seidenberg, M. S., & Andersen, E. S. (2007).
Graded semantic and phonological similarity effects in
priming: Evidence for a distributed connectionist approach
to morphology. Journal of Experimental Psychology:
General, 136, 323–345.

Gough, P. M., Nobre, A. C., & Devlin, J. T. (2005). Dissociating
linguistic processes in the left inferior frontal cortex with
transcranial magnetic stimulation. Journal of Neuroscience,
25, 8010–8016.

Greenwald, A. G., Draine, S. C., & Abrams, R. L. (1996). Three
cognitive markers of unconscious semantic activation.
Science, 273, 1699–1702.

Griniasty, M., Tsodyks, M., & Amit, D. (1993). Conversion of
temporal correlations between stimuli to spatial correlations
between attractors. Neural Computation, 5, 1–17.

Grose-Fifer, J., & Deacon, D. (2004). Priming by natural
category membership in the left and right cerebral
hemispheres. Neuropsychologia, 42, 1948–1960.

Haarmann, H., & Usher, M. (2001). Maintenance of semantic
information in capacity-limited item short-term memory.
Psychonomic Bulletin & Review, 8, 568–578.

Henson, R. N. (2003). Neuroimaging studies of priming.
Progress in Neurobiology, 70, 53–81.

Hill, H., Strube, M., Roesch-Ely, D., & Weisbrod, M.
(2002). Automatic vs. controlled processes in semantic
priming—Differentiation by event-related potentials.
International Journal of Psychophysiology, 44,
197–218.

Hines, D., Czerwinski, M., Sawyer, P. K., & Dwyer, M. (1986).
Automatic semantic priming: Effect of category exemplar
level and word association level. Journal of Experimental
Psychology: Human Perception and Performance, 12,
370–379.

Hodgson, J. M. (1991). Informational constraints on
pre-lexical priming. Language and Cognitive Processes,
6, 169–205.

Hopfield, J. J. (1982). Neural networks and physical
systems with emergent collective computational abilities.
Proceedings of the National Academy of Sciences, U.S.A.,
79, 2554–2558.

Hutchinson, A., Whitman, R. D., Abeare, C., & Raiter, J.
(2003). The unification of mind: Integration of hemispheric
semantic processing. Brain and Language, 87, 361–368.

Hutchison, K. A. (2003). Is semantic priming due to
association strength or feature overlap? A microanalytic
review. Psychonomic Bulletin & Review, 10, 785–813.

Hutchison, K. A., Neely, J. H., & Johnson, J. D. (2001).
With great expectations, can two ‘‘wrongs’’ prime a
‘‘right’’? Journal of Experimental Psychology: Learning,
Memory, and Cognition, 27, 1451–1463.

Hutsler, J., & Galuske, R. A. (2003). Hemispheric asymmetries
in cerebral cortical networks. Trends in Neurosciences,
26, 429–435.

Huttenlocher, J., & Kubicek, L. F. (1983). The source of
relatedness effects on naming latency. Journal of
Experimental Psychology: Learning, Memory, and
Cognition, 9, 486–496.

Ince, E., & Christman, S. D. (2002). Semantic representations
of word meanings by the cerebral hemispheres. Brain
and Language, 80, 393–420.

Jung-Beeman, M. (2005). Bilateral brain processes for
comprehending natural language. Trends in Cognitive
Sciences, 9, 712–718.

Kaplan, J. A., Brownell, H. H., Jacobs, J. R., & Gardner, H.
(1990). The effects of right hemisphere damage on
the pragmatic interpretation of conversational remarks.
Brain and Language, 38, 315–333.

Keefe, D. E., & Neely, J. H. (1990). Semantic priming in the
pronunciation task: The role of prospective prime-generated
expectancies. Memory & Cognition, 18, 289–298.

Khateb, A., Michel, C. M., Pegna, A. J., O’Dochartaigh,
S. D., Landis, T., & Annoni, J.-M. (2003). Processing of
semantic categorical and associative relations: An ERP
mapping study. International Journal of
Psychophysiology, 49, 41–55.

Kiefer, M., Ahlegian, M., & Spitzer, M. (2005). Working
memory capacity, indirect semantic priming, and Stroop
interference: Pattern of interindividual prefrontal
performance differences in healthy volunteers.
Neuropsychology, 19, 332–344.

Kiefer, M., Weisbrod, M., Kern, I., Maier, S., & Spitzer, M.
(1998). Right hemisphere activation during indirect
semantic priming: Evidence from event-related potentials.
Brain and Language, 64, 377–408.

Kischka, U., Kammer, T. H., Maier, S., Weisbrod, M., Thimm,
M., & Spitzer, M. (1996). Dopaminergic modulation of
semantic network activation. Neuropsychologia,
34, 1107–1113.

Koivisto, M. (1997). Time course of semantic activation in the
cerebral hemispheres. Neuropsychologia, 35, 497–504.

Koivisto, M. (1998). Categorical priming in the cerebral
hemispheres: Automatic in the left hemisphere,
postlexical in the right hemisphere? Neuropsychologia, 36,
661–668.

Koivisto, M., & Hamalainen, H. (2002). Hemispheric
semantic priming in the single word presentation task.
Neuropsychologia, 40, 978–985.

Koivisto, M., & Laine, M. (1999). Strategies of semantic
categorization in the cerebral hemispheres. Brain and
Language, 66, 341–357.

Koivisto, M., & Revonsuo, A. (2000). Semantic priming
by pictures and words in the cerebral hemispheres.
Cognitive Brain Research, 10, 91–98.

Korsnes, M. S., & Magnussen, S. (2007). Automatic semantic
priming in the left and right hemispheres. Scandinavian
Journal of Psychology, 48, 197–202.

Kreher, D. A., Holcomb, P. J., & Kuperberg, G. R. (2006).
An electrophysiological investigation of indirect semantic
priming. Psychophysiology, 43, 550–563.

Lavigne, F. (2004). AIM networks: AutoIncursive memory
networks for anticipation toward learned goals.
International Journal of Computing Anticipatory Systems,
14, 196–214.

Lavigne, F., & Darmon, N. (2008). Dopaminergic
neuromodulation of semantic priming in a cortical network
model. Neuropsychologia, 46, 3074–3087.

Lavigne, F., & Denis, S. (2001). Attentional and semantic
anticipations in recurrent neural networks. International
Journal of Computing Anticipatory Systems, 8, 74–95.

Lavigne, F., & Denis, S. (2002). Neural network modeling
of learning of contextual constraints on adaptive
anticipations. International Journal of Computing
Anticipatory Systems, 12, 253–268.

Lavigne, F., & Lavigne, P. (2000). Anticipatory semantic
processes. International Journal of Computing
Anticipatory Systems, 7, 3–31.

Lavigne, F., Vitu, F., & d’Ydewalle, G. (2000). Locus of context
effects in sentence reading: Effects on the initial eye landing
position in words. Acta Psychologica, 104, 191–214.

Lee, Y.-A., Binder, K. S., Kim, J.-O., Pollatsek, A., & Rayner, K.
(1999). Activation of phonological codes during eye

2316 Journal of Cognitive Neuroscience Volume 21, Number 12



fixations in reading. Journal of Experimental Psychology:
Human Perception and Performance, 25, 948–964.

Livesay, K., & Burgess, C. (1998). Mediated priming in
high-dimensional semantic space: No effect of direct
semantic relationships or co-occurrence. Brain and
Cognition, 37, 102–105.

Lorch, J. R. F. (1982). Priming and search processes in semantic
memory: A test of three models of spreading activation.
Journal of Verbal Learning and Verbal Behavior,
21, 468–492.

Lorch, R. F., Balota, D. A., & Stamm, E. G. (1986). Locus of
inhibition effects in the priming of lexical decisions:
Pre- or postlexical access? Memory & Cognition,
14, 95–103.

Lucas, M. (1999). Context effects in lexical access:
A meta-analysis. Memory & Cognition, 27, 385–398.

Lucas, M. (2000). Semantic priming without association:
A meta-analytic review. Psychonomic Bulletin & Review,
7, 618–630.

Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working
memory for features and conjunctions. Nature, 390,
279–281.

Lukatela, G., & Turvey, M. T. (1994). Visual lexical access
is initially phonological: 1. Evidence from associative
priming by words, homophones, and pseudohomophones.
Journal of Experimental Psychology: General, 123, 107–128.

Lupker, S. J. (1984). Semantic priming without association:
A second look. Journal of Verbal Learning and Verbal
Behavior, 23, 709–733.

Manschreck, T. C., Maher, B. A., Milavetz, J. J., Ames, D.,
Weisstein, C. C., & Schneyer, M. L. (1988). Semantic
priming in thought disordered schizophrenic patients.
Schizophrenia Research, 1, 61–66.

Massaro, D. W., Jones, R. D., Lipscomb, C., & Scholz, R. (1978).
Role of prior knowledge on naming and lexical decisions
with good and poor stimulus information. Journal of
Experimental Psychology: Human Learning and
Memory, 4, 498–512.

Masson, M. E. J. (1995). A distributed memory model of
semantic priming. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 21, 3–23.

Masson, M. E. J., Besner, D., & Humphreys, G. W. (1991).
A distributed memory model of context effects in word
identification. Hillsdale, NJ: Erlbaum.

McDonald, S. (2000). Exploring the cognitive basis of
right-hemisphere pragmatic language disorders. Brain and
Language, 75, 82–107.

McKoon, G., & Ratcliff, R. (1992). Spreading activation versus
compound cue accounts of priming: Mediated priming
revisited. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 18, 1155–1172.

McNamara, T. P. (1992). Theories of priming: I. Associative
distance and lag. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 18, 1173–1190.

McNamara, T. P., & Altarriba, J. (1988). Depth of spreading
activation revisited: Semantic mediated priming occurs
in lexical decisions. Journal of Memory and Language,
27, 545–559.

McRae, K. (2004). Semantic memory: Some insights from
feature-based connectionist attractor networks. In B. H. Ross
(Ed.), Psychology of learning and motivation: Advances
in research and theory (Vol. 45, pp. 41–86). San Diego, CA:
Academic Press.

McRae, K., & Boisvert, S. (1998). Automatic semantic similarity
priming. Journal of Experimental Psychology: Learning,
Memory, and Cognition, 24, 558–572.

McRae, K., Cree, G. S., Seidenberg, M. S., & McNorgan, C.
(2005). Semantic feature production norms for a large set

of living and nonliving things. Behavior Research Methods,
37, 547–559.

McRae, K., Cree, G. S., Westmacott, R., & De Sa, V. R. (1999).
Further evidence for feature correlations in semantic
memory. Canadian Journal of Experimental Psychology,
53, 360–373.

McRae, K., de Sa, V. R., & Seidenberg, M. S. (1997). On the
nature and scope of featural representations of word
meaning. Journal of Experimental Psychology:
General, 126, 99–130.

McRae, K., & Ross, B. H. (2004). Semantic memory: Some
insights from feature-based connectionist attractor
networks. San Diego, CA: Elsevier Academic Press.

Meyer, D. E., & Schvaneveldt, R. W. (1971). Facilitation in
recognizing pairs of words: Evidence of a dependence
between retrieval operations. Journal of Experimental
Psychology, 90, 227–234.

Meyer, D. E., & Schvaneveldt, R. W. (1976). Meaning, memory
structure, and mental processes. Science, 192, 27–33.

Meyer, D. E., Schvaneveldt, R. W., & Ruddy, M. G. (1972).
Activation of lexical memory. Meeting of the Psychonomic
Society, St Louis, Missouri.

Miyashita, Y. (1988). Neuronal correlate of visual associative
long-term memory in the primate temporal cortex.
Nature, 335, 817–820.

Miyashita, Y., & Chang, H. S. (1988). Neuronal correlate of
pictorial short-term memory in the primate temporal
cortex. Nature, 331, 68–70.

Mongillo, G., Amit, D. J., & Brunel, N. (2003). Retrospective
and prospective persistent activity induced by Hebbian
learning in a recurrent cortical network. European
Journal of Neuroscience, 18, 2011–2024.

Moritz, S., Mersmann, K., Kloss, M., Jacobsen, D., Andresen, B.,
Krausz, M., et al. (2001). Enhanced semantic priming in
thought-disordered schizophrenic patients using a
word pronunciation task. Schizophrenia Research, 48,
301–305.

Moritz, S., Woodward, T. S., Kuppers, D., Lausen, A.,
& Schickel, M. (2003). Increased automatic spreading of
activation in thought-disordered schizophrenic patients.
Schizophrenia Research, 59, 181–186.

Moss, H. E., Hare, M. L., Day, P., & Tyler, L. K. (1994).
A distributed memory model of the associative boost in
semantic priming. Connection Science, 6, 413–427.

Mummery, C. J., Shallice, T., & Price, C. J. (1999). Dual-process
model in semantic priming: A functional imaging
perspective. Neuroimage, 9, 516–525.

Murray, E. A., Baxter, M. G., & Gaffan, D. (1998). Monkeys
with rhinal cortex damage or neurotoxic hippocampal
lesions are impaired on spatial scene learning and object
reversals. Behavioral Neuroscience, 112, 1291–1303.

Nakagawa, A. (1991). Role of anterior and posterior attention
networks in hemispheric asymmetries during lexical
decisions. Journal of Cognitive Neuroscience, 3,
313–321.

Naya, Y., Sakai, K., & Miyashita, Y. (1996). Activity of primate
inferotemporal neurons related to a sought target in
pair-association task. Proceedings of the National Academy
of Sciences, U.S.A., 93, 2664–2669.

Naya, Y., Yoshida, M., & Miyashita, Y. (2001). Backward
spreading of memory-retrieval signal in the primate
temporal cortex. Science, 291, 661–664.

Naya, Y., Yoshida, M., & Miyashita, Y. (2003). Forward
processing of long-term associative memory in monkey
inferotemporal cortex. Journal of Neuroscience, 23,
2861–2871.

Naya, Y., Yoshida, M., Takeda, M., Fujimichi, R., & Miyashita, Y.
(2003). Delay-period activities in two subdivisions of monkey

Brunel and Lavigne 2317



inferotemporal cortex during pair association memory
task. European Journal of Neuroscience, 18, 2915–2918.

Neely, J. H. (1976). Semantic priming and retrieval from
lexical memory: Evidence for facilitatory and inhibitory
processes. Memory & Cognition, 4, 648–654.

Neely, J. H. (1977). Semantic priming and retrieval from lexical
memory: Roles of inhibitionless spreading activation and
limited-capacity attention. Journal of Experimental
Psychology: General, 106, 226–254.

Neely, J. H. (1991). Semantic priming effects in visual word
recognition: A selective review of current findings and
theories. In J. H. Neely, D. Besner, & G. W. Humphreys
(Eds.), Basic processes in reading: Visual word
recognition (pp. 264–336). Mahwah, NJ: Erlbaum.

Neely, J. H., Keefe, D. E., & Ross, K. L. (1989). Semantic
priming in the lexical decision task: Roles of prospective
prime-generated expectancies and retrospective semantic
matching. Journal of Experimental Psychology: Learning,
Memory, and Cognition, 15, 1003–1019.

Nelson, D. L., McEvoy, C. L., & Schreiber, T. (1999).
University of South Florida word association, rhyme
and word fragment norms. Retrieved November 8, 2008,
from http://cyber.acomp.usf.edu/FreeAssociation/.

Nobre, A. C., Allison, T., & McCarthy, G. (1994). Word
recognition in the human inferior temporal lobe.
Nature, 372, 260–263.

Nobre, A. C., & McCarthy, G. (1995). Language-related field
potentials in the anterior–medial temporal lobe: II.
Effects of word type and semantic priming. Journal of
Neuroscience, 15, 1090–1099.

Ober, B. A., Vinogradov, S., & Shenaut, G. K. (1995).
Semantic priming of category relations in schizophrenia.
Neuropsychology, 9, 220–228.

Parga, N., & Rolls, E. T. (1998). Transform-invariant recognition
by association in a recurrent network. Neural Computation,
10, 1507–1525.

Parga, N., & Virasoro, M. A. (1986). The ultrametric
organization of memories in a neural network. Journal
de Physique, 47, 1857.

Perea, M., & Gotor, A. (1997). Associative and semantic
priming effects occur at very short stimulus-onset
asynchronies in lexical decision and naming. Cognition,
62, 223–240.

Perea, M., Gotor, A., & Nacher, M. A. J. (1997). Efectos de
facilitacion asociativa vs. semantica con una breve asincronia
estimular serial-test. Psicothema, 9, 509–517.

Perea, M., & Rosa, E. (2002). Does the proportion of
associatively related pairs modulate the associative
priming effect at very brief stimulus-onset asynchronies?
Acta Psychologica, 110, 103–124.

Plaut, D. C. (1995). Semantic and associative priming in a
distributed attractor network. Paper presented at the
17th Annual Conference of the Cognitive Science Society,
Pittsburgh.

Plaut, D. C., & Booth, J. R. (2000). Individual and
developmental differences in semantic priming: Empirical
and computational support for a single-mechanism
account of lexical processing. Psychological Review,
107, 786–823.

Posner, M. I. (1978). Chronometric exploration of mind.
Hillsdale, NJ: Erlbaum.

Posner, M. I., & Snyder, C. R. R. (1975). Attention and cognitive
control. In R. L. Solso (Ed.), Information processing
and cognition: The Loyola symposium (pp. 55–85).
Hillsdale, NJ: Erlbaum.

Postman, L., & Keppel, G. (1970). Norms of word association.
New York: Academic Press.

Prior, A., & Bentin, S. (2003). Incidental formation of episodic

associations: The importance of sentencial context.
Memory & Cognition, 31, 306–316.

Prior, A., & Bentin, S. (2008). Word associations are formed
incidentally during sentential semantic integration.
Acta Psychologica, 127, 51–57.

Rainer, G., Rao, S. C., & Miller, E. K. (1999). Prospective coding
for objects in primate prefrontal cortex. Journal of
Neuroscience, 19, 5493–5505.

Randall, B., Moss, H. E., Rodd, J. M., Greer, M., & Tyler, L. K.
(2004). Distinctiveness and correlation in conceptual
structure: Behavioral and computational studies.
Journal of Experimental Psychology: Learning,
Memory, and Cognition, 30, 393–406.

Rastle, K., Davis, M. H., Marslen-Wilson, W. D., & Tyler, L. K.
(2000). Morphological and semantic effects in visual word
recognition: A time-course study. Language and
Cognitive Processes, 15, 507–537.

Ratcliff, R. (1978). A theory of memory retrieval. Psychological
Review, 85, 59–108.

Ratcliff, R. (2006). Modeling response signal and response time
data. Cognitive Psychology, 53, 195–237.

Ratcliff, R., Gomez, P., & McKoon, G. (2004). A diffusion model
account of the lexical decision task. Psychological Review,
111, 159–182.

Ratcliff, R., & McKoon, G. (1988). A retrieval theory of priming
in memory. Psychological Review, 95, 385–408.

Renart, A., Moreno, R., de la Rocha, J., Parga, N., & Rolls, E. T.
(2001). A model of the IT–PF network in object working
memory which includes balanced persistent activity and
tuned inhibition. Neurocomputing, 38–40, 1525–1531.

Richards, L., & Chiarello, C. (1995). Depth of associated
activation in the cerebral hemispheres: Mediated versus
direct priming. Neuropsychologia, 33, 171–179.

Roesch-Ely, D., Weiland, S., Scheffel, H., Schwaninger, M.,
Hundemer, H.-P., Kolter, T., et al. (2006). Dopaminergic
modulation of semantic priming in healthy volunteers.
Biological Psychiatry, 60, 604–611.

Roitman, J. D., & Shadlen, M. N. (2002). Response of neurons
in the lateral intraparietal area during a combined visual
discrimination reaction time task. Journal of Neuroscience,
22, 9475–9489.

Romani, S., Amit, D. J., & Mongillo, G. (2006). Mean-field
analysis of selective persistent activity in presence of
short-term synaptic depression. Journal of Computational
Neuroscience, 20, 201–217.

Rossell, S. L., Bullmore, E. T., Williams, S. C. R., & David, A. S.
(2001). Brain activation during automatic and controlled
processing of semantic relations: A priming experiment
using lexical-decision. Neuropsychologia, 39, 1167–1176.

Rossell, S. L., Price, C. J., & Nobre, A. C. (2003). The
anatomy and time course of semantic priming
investigated by fMRI and ERPs. Neuropsychologia, 41,
550–564.

Roxin, A., Brunel, N., & Hansel, D. (2005). Role of delays
in shaping spatiotemporal dynamics of neuronal activity in
large networks. Physical Review Letters, 94, 238103.

Sabb, F. W., Bilder, R. M., Chou, M., & Bookheimer, S. Y.
(2007). Working memory effects on semantic processing:
Priming differences in pars orbitalis. Neuroimage, 37,
311–322.

Sakai, K., & Miyashita, Y. (1991). Neural organization for the
long-term memory of paired associates. Nature, 354,
152–155.
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