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a b s t r a c t

Semantic priming between items stored and associated in memory underlies contextual recall. Response
times to process a given target item are shorter when following presentation of a related prime item than
when it is unrelated. The study of priming effects allows investigating the structure of semantic networks
as a function of association strength and number of links relating the prime and target. Behavioral data
from divided visual field experiments in healthy subjects show a variability in the magnitude of prim-
ing effects when the left or right hemisphere is primary involved. Data from schizophrenic patients also
exhibit variability in priming magnitude compared to data from healthy subjects. Mathematical models
of cortical networks allow theorists to understand the link between the physiology of single neurons and
synapses and network behavior. Computational modelling can replicate electrophysiological recordings
of cortical neurons in monkeys, that exhibit two types of task-related activity, ‘retrospective’ (related to
a previously shown stimulus) and ‘prospective’ (related to a stimulus expected to appear, due to learned
association between both stimuli). Experimental studies of associative priming report priming effects on
behavioral data in both human and monkeys. Cortical network models can account for a large variety of
priming effects observed in human, and for the dependence of retrospective activity on dopamine neu-
romodulation. Here, we investigate how variable levels of dopamine in a model of a cortical network can
modulate prospective activity to vary the magnitude of semantic priming. We simulate a biologically real-
istic network of integrate and fire neurons to study the effects of dopaminergic neuromodulation of NMDA
receptors of glutamatergic and gabaergic neurons on semantic priming dynamics. Results support the
possibility that different levels of dopaminergic neuromodulation can subtend hemispheric differences

in semantic priming, corresponding to focused priming in the left hemisphere and to extended priming
in the right hemisphere. Furthermore, results can account for priming perturbations in schizophrenia
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. Introduction

Semantic priming processes underlying contextual recall and
anguage comprehension are reported to depend on learned asso-
iations between concepts in memory. The initial experimental
tudy of semantic priming effects reported shorter response times
o accept a target item as an actual word when related to a
receding prime (e.g., ‘butter’ and ‘bread’) than when unrelated
e.g., ‘tree’ and ‘bread’) (Meyer, Schvaneveldt, & Rudy, 1972; see
eyer & Schvaneveldt, 1971). According to the paradigm of men-
al chronometry, shorter reaction times are assumed to reflect
ynamic ‘activation’ of the target word by a semantically related
ontextual prime word (see Hutchison, 2003; Neely, 1991 for
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eviews). The variability in priming effects is the object of numer-
us researches. Many data have revealed that priming magnitude
epends on several cognitive parameters such as the strength
nd type of the prime-target relation (Brunel & Lavigne, in press;
hiarello, Liu, Shears, Quan, & Kacinik, 2003; Hutchison, 2003;
ucas, 2000; McRae, Cree, Seidenberg, & McNorgan, 2005; Neely,
991 for reviews).

.1. Semantic priming

Semantic priming effects can be tested according to different
evels of association strength between prime and target, measured

n production norms as the percentage of production of associates
targets) to a given word (prime) among several subjects (Cree &

cRae, 2003; McRae, de Sa, & Seidenberg, 1997; Nelson, McEvoy,
Schreiber, 2004). Variable association strengths can be involved

hrough a step1 relation between a prime and a target directly

http://www.sciencedirect.com/science/journal/00283932
mailto:lavigne@unice.fr
dx.doi.org/10.1016/j.neuropsychologia.2008.06.019
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ssociated in memory (e.g., tiger-stripes). Step1 priming is typically
eported to arise rapidly at short SOAs (stimulus onset asynchrony
s the time elapsed between prime and target onsets) of a few
ens of milliseconds (Hodgson, 1991; Lee, Binder, Kim, Pollatsek,

Rayner, 1999; Perea & Gotor, 1997; but see de Mornay Davies,
998; Thompson-Schill, Kurtz, & Gabrieli, 1998). Variability in the
agnitude of step1 priming effects is reported as depending on

ssociation strength a (Abernethy & Coney, 1993; Coney, 2002;
illiams, 1996; see Hutchison, 2003, for a discussion). Priming

ffects are also reported through step2 relations between a prime
nd target indirectly associated through a common associate (e.g.,
ion-(tiger)-stripes) (Balota & Lorch, 1986; Bennett & McEvoy, 1999;
hwilla & Kolk, 2002; Kiefer, Weisbrod, Kern, Maier, & Spitzer, 1998;
reher, Holcomb, & Kuperberg, 2006; Livesay & Burgess, 1998;
cKoon & Ratcliff, 1992; McNamara & Altarriba, 1988; McNamara,

992; Ratcliff & McKoon, 1988; Sayette, Hufford, & Thorson, 1996;
helton & Martin, 1992; Spitzer, Braun, Hermle, & Maier, 1993a;
pitzer, Braun, Maier, Hermle, & Maher, 1993b; Weisbrod, Maier,
arig, Himmelsbach, & Spitzer, 1998; but see Chwilla, Kolk, &
ulder, 2000; de Groot, 1983). Step2 priming is reported as weaker

han step1 priming (Arnott, Chenery, Copland, Murdoch, & Silburn,
003; Hill, Strube, Roesch-Ely, & Weisbrod, 2002; Kiefer, Ahlegian,

Spitzer, 2005; McNamara, 1992; Moritz, Woodward, Kuppers,
ausen, & Schickel, 2002; Rossell, Rabe-Hesketh, Shapleske, &
avid, 2000).

The variability of the magnitude of priming effects is greater at
hort SOAs depending on associations strength (Abernethy & Coney,
993; Coney, 2002) and step (Bennett & McEvoy, 1999; Hill et al.,
002; Kiefer et al., 2005; Kischka et al., 1996; Moritz et al., 1999;
pitzer et al., 1993a; Spitzer et al., 1993b; see Brunel & Lavigne, in
ress, for a review). This variability allows to investigate the dif-

erent patterns of priming as a function of hemispheric processing
nd their pathological perturbations.

.2. Hemispheric priming

An important factor reported as influencing the mode of seman-
ic processing is the cerebral hemisphere primarily involved.
ivided visual field experiments investigate the relative magni-

udes of semantic priming effects when the prime and/or target
re presented in the right visual field-left hemisphere (RVF-LH) or
n the left visual field-right hemisphere (LVF-RH) (e.g., Brunel &
avigne, in press; Chiarello et al., 2003 for reviews). Behavioral data
eported at short SOAs show that step1 priming arises when the
VF-LH is involved (Bouaffre & Faita-Ainseba, 2007) and when both
emispheres are involved (Frishkoff, 2007; Hutchinson, Whitman,
beare, & Raiter, 2003). In the later case priming of weak asso-
iates is weaker than priming of strong associates (Coney, 2002;
rishkoff, 2007). The LVF-RH exhibits priming of strong associates
Hutchinson et al., 2003; but see Nakagawa, 1991) and of weak asso-
iates (Hutchinson et al., 2003), while the RVF-LH exhibits priming
f strong associates only (Abernethy & Coney, 1993; Coney, 2002;
akagawa, 1991; Yochim, Kender, Abeare, Gustafson, & Whitman,
005). Step2 priming is reported at short SOAs as smaller than step1
riming when both hemispheres are involved (Kiefer et al., 1998;
ochim et al., 2005; see Richards & Chiarello, 1995 for RH effects
hen primes are centrally presented). It is less reliable when only

ne hemisphere is involved (Yochim et al., 2005). Hemispheric dif-
erences in semantic priming effects have been described as ‘fine’
r focused semantic coding in the left hemisphere, in which strong

tep1 associates are activated, and ‘coarse’ or extended semantic
oding in the right hemisphere, in which strong and weak step1 and
tep2 associates are activated (Beeman, Bowden, & Gernsbacher,
000; Beeman & Chiarello, 1998; Beeman, Friedman, Grafman, &
erez, 1994; Chiarello et al., 2003). On the one hand, the synaptic
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ypothesis proposes that hemispheric differences in semantic pro-
essing depend on different synaptic properties of the left and right
etworks (Jung-Beeman, 2005; see Brunel & Lavigne, in press, for
modeling approach). On the other hand, the neuromodulatory

ypothesis proposes that differential dopaminergic modulation
ould be involved in the two hemispheres, according to studies
eporting different levels of dopamine (Slopsema, van der Gugten,
de Bruin, 1982) and different impacts of dopamine agonist in the

eft and right hemispheres (Roesch-Ely et al., 2006). Then, the ques-
ion remains open as to if and how dopamine can actually modulate
he magnitude of step1 and step2 semantic priming.

.3. Priming in schizophrenia

Schizophrenic patients are reported to exhibit unbalanced
emispheric lateralization as well as perturbed semantic prim-

ng (Manschreck et al., 1988; Moritz et al., 2001, 2002; Rossell &
avid, 2006; Spitzer et al., 1993a,b). Dysfunctional dopamine neu-

omodulation is proposed as involved in the modifications of the
agnitude of priming effects in schizophrenia (Abi-Dargham et al.,

002; Kischka et al., 1996; Roesch-Ely et al., 2006). Data suggest
hat the magnitudes of direct step1 and indirect step2 priming are
ifferentially affected in some schizophrenic patients, depending
n the time course of priming effects across variable SOAs.

When considering behavioral reaction time data at long SOAs,
ecreased (Barch et al., 1996; Besche et al., 1997) or increased
Gouzoulis-Mayfrank et al., 2003; Lecardeur et al., 2007) priming
ffects are reported in schizophrenic patients. SOAs longer than
50 ms are considered as involving various types of priming pro-
esses such as association-based activation and slow facilitatory or
nhibitory expectancies (Deacon, Uhm, Ritter, Hewitt, & Dynowska,
999; Neely, 1976, 1991). The global priming effect reported at
ong SOAs is then the end-product of complex interacting processes
ifficult to disentangle and interpret (Keefe & Neely, 1990; Neely,
991; Neely, Keefe, & Ross, 1989). In addition, differences between
atients and controls on ERPs data are not significant at long SOAs
hough arising at short SOAs (Kreher, Holcomb, Goff, & Kuperberg,
007). Short SOAs are considered as involving solely automatic
riming processes that can be interpreted in a more straightfor-
ard way as automatic spreading of activation from the prime to

he related target (Keefe & Neely, 1990; Neely et al., 1989). When
ompared to priming effects in healthy subjects, reported effects
n schizophrenic patients at short SOAs exhibit a great variability,
anging from hypo-priming (Henik, Priel, & Umansky, 1992; Ober,
inogradov, & Shenaut, 1997) to hyper-priming (Babin, Wassef,
Sereno, 2007; Lecardeur et al., 2007; Manschreck et al., 1988;
oritz et al., 2001, 2002; Spitzer et al., 1993a, 1994; Weisbrod et al.,

998), with the possibility for normal priming (Barch et al., 1996;
ee Minzenberg, Ober, & Vinogradov, 2002 for a review). Hyper-
riming is also reported as more reliable, or of larger magnitude,
or step2 than step1 relations (Kreher et al., 2007; Manschreck et
l., 1988; Moritz et al., 2002; Spitzer et al., 1993a,b).

Numerous data on the effects of dopamine on working mem-
ry have led researchers to interpret variations in the magnitude of
riming as caused by perturbations of dopamine neuromodulation

n schizophrenia (Kischka et al., 1996; Spitzer et al., 1993a). To test
or this hypothesis, double blind studies investigated the effects of
recursors of DA receptors agonists compared to placebo in healthy
ubjects. Reported effects mirrored hyper-priming reported in
chizophrenic patients. Step2 but not step1 priming is reduced

nder l-Dopa (amino acid l-3,4-dihydroxyphenylalanine, unse-

ective agonist) compared to placebo (Angwin, Chenery, Copland,
urdoch, & Silburn, 2004; Copland, Chenery, Murdoch, Arnott,
Silburn, 2003; Kischka et al., 1996), and step2 priming only is

educed in the RVF-LH under pergolide (unselective D1/D2 recep-
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ors agonist) compared to placebo and to bromocriptine (selective
2 receptors agonist) (Roesch-Ely et al., 2006). The magnitude of
riming effects in healthy subjects then depend on the ingestion of
opamine precursor. However, it is still unknown if dopamine mod-
lates priming effect by acting at the cortical level where semantic
rocesses are assumed to occur. In addition, increased priming
ffects are reported on schizophrenic patients exhibiting formal
hought disorders but not on other schizophrenic patients (Moritz
t al., 2001, 2002; Spitzer et al., 1993a), which raises the question of
he possible involvement of a precise level of dopamine depletion
n the pattern of priming.

Though the effects of dopamine on semantic priming per se have
een seldom studied, perturbed levels of dopamine are considered
s subtending disorders associated to schizophrenia (Abi-Dargham
t al., 2002; Abi-Dargham & Moore, 2003; Fleming, Goldberg, Gold,

Weinberger, 1995; Gooding & Tallent, 2004; Park & Holzman,
992; Park & Holzman, 1993a; Park & Holzman, 1993b). Dopamine
s considered to be a key factor in working memory functions
Arnsten, 1998; Tanaka, 2006). Indeed, depletion of dopamine
Brozoski, Brown, Rosvold, & Goldman, 1979) or infusions of D1
eceptors (D1R) antagonists (Sawaguchi & Goldman-Rakic, 1991)
nto the prefrontal cortex (PFC) severely impairs working mem-
ry performance. Both electrophysiological and behavioral studies
eport that the dependence of mnemonic activity on dopamine
odulation follows a bell-shaped curve (Arnsten, 1998; Murphy,
rnsten, Jentsch, & Roth, 1996; Williams & Goldman-Rakic, 1995;
ahrt, Taylor, Mathew, & Arnsten, 1997). Amphetamine improves
orking memory performance of schizophrenic patients (Daniel

t al., 1991), suggesting that the PFC of schizophrenic patients is
n a hypodopaminergic state (Davis, Kahn, Ko, & Davidson, 1991).
he assumption that it is due to D1R disorganization or depletion
n the PF, cingulate and temporal cortices, is supported by recep-
or imaging studies (Okubo, Suhara, Suzuki, & Kobayashi, 1997;
ee Abi-Dargham et al., 2002; Abi-Dargham & Moore, 2003) and
y electrophysiological studies (Williams & Goldman-Rakic, 1995).
n addition, schizophrenic patients present aberrant brain later-
lization (Bracha, 1987; Lyon and Satz, 1991) as well as modified
symmetry of cerebral anatomy (Crow, Colter, Frith, Johnstone,

Owens, 1989; Petty, 1999; Raz et al., 1987) and dopamine
eurotransmission (Hietala et al., 1999). Differential dopamine
euromodulation could be involved not only between healthy par-
icipants and schizophrenic patients, but also between the left and
ight hemispheres. Indeed, in healthy subjects, l-dopa has differ-
ntial effects on the lateralization of lexical processing depending
n their schizotypal features (Mohr et al., 2005) and on the relative
agnitudes of semantic priming in the right and left hemispheres

Roesch-Ely et al., 2006). Lateralization of normal cerebral func-
ions might then be related to an underlying lateralization of the
et effect of dopamine on cortical neurons (see Vernaleken et al.,
007). Then, the test for the effects of dopamine on semantic prim-

ng at the behavioral level requires taking into account of dopamine
ffects at the cellular level.

.4. Dopamine neuromodulation at the cellular level

Neurophysiological observations of dopaminergic afferences
n both excitatory and inhibitory neurons (Sesack, Bressler, &
ewis, 1995; Sesack, Hawrylak, Melchitzky, & Lewis, 1998; Verney,
lvarez, Geffard, & Berger, 1990; Williams & Goldman-Rakic,
993) suggest that dopamine could modulate both excitatory and

nhibitory transmission. Regarding excitatory pyramidal neurons,
1R stimulation is reported as reducing inhibitory post-synaptic
urrents (IPSCs; Seamans, Gorelova, Durstewitz, & Yang, 2001;
rantham-Davidson, Neely, Lavin, & Seamans, 2004; but see Gao &
oldman-Rakic, 2003; Gao, Krimer, & Goldman-Rakic, 2001) and

i
c
m
s
i

ologia 46 (2008) 3074–3087

ncreasing spontaneous excitatory post-synaptic currents (EPSC;
ang, Feng, & Zheng, 2002). The modulation of membrane

xcitability, by increased D1R activation, increases the number of
pikes (Kroner, Krimer, Lewis, & Barrionuevo, 2007; Tseng, Lewis,
ipska, & O’Donnell, 2007) and enhances peak NMDA currents of
0% in a concentration-dependent fashion (Flores-Hernandez et
l., 2002). D1R activation may then boost incoming weak synaptic
nputs and increase responsiveness of pyramidal neurons to NMDA-

ediated synaptic responses (Cepeda, Colwell, Itri, Chandler, &
evine, 1998; Galarraga, Hernandez-Lopez, Reyes, Barral, & Bargas,
997; Hernandez-Lopez, Bargas, Surmeier, Reyes, & Galarraga,
997; Seamans et al., 2001; Wang & O’Donnell, 2001; Young &
ang, 2004). D1R activation then enhances PFC cell excitability
Henze, Gonzalez-Burgos, Urban, Lewis, & Barrionuevo, 2000; Lavin

Grace, 2001; Seamans & Yang, 2004; Yang & Seamans, 1996)
t least at prolonged times after dopamine agonist application
Rotaru, Lewis, & Gonzalez-Burgos, 2007). Regarding inhibitory
nterneurons, D1R activation is reported as increasing excitabil-
ty of fast spiking interneurons (Gao & Goldman-Rakic, 2003;
orelova, Seamans, & Yang, 2002; Kroner et al., 2007; Zhou &
ablitz, 1999; see also Tseng & O’Donnell, 2004), the FS-P type
f synapses representing 98% of interneuron-pyramidal synapses
Gao & Goldman-Rakic, 2003). D1 receptors are reported as more
bundant in the PFC than D2 receptors as (Farde et al., 1987;
oldman-Rakic, Lidow, & Gallager, 1990; Lidow, Goldman-Rakic,
allager, & Rakic, 1991; see Muly, Szigeti, & Goldman-Rakic, 1998),
2 activation having varying effects on interneurons (Gorelova
t al., 2002; Seamans et al., 2001; Trantham-Davidson et al.,
004; Tseng & O’Donnell, 2004; Wang et al., 2002). D1 recep-
ors are considered as essential to working memory function in
he PFC (Bandyopadhyay & Hablitz, 2007; Muller, von Cramon, &
ollmann, 1998; Murphy et al., 1996; Sawaguchi & Goldman-Rakic,
991; Sawaguchi & Goldman-Rakic, 1994; Williams & Goldman-
akic, 1995), by neuromodulating the gain within the PFC network
Seamans & Yang, 2004). D1R activation increases NMDAR-based
xcitatory synaptic transmission (Cepeda, Radisavljevic, Peacock,
evine, & Buchwald, 1992; Zheng, Zhang, Bunney, & Shi, 1999; see
andyopadhyay, Gonzalez-Islas, & Hablitz, 2005) and inhibitory
ynaptic transmission (Gellman & Aghajanian, 1993; Penit-Soria,
udinat, & Crepel, 1987; Zhou & Hablitz, 1999; but see Law-Tho,
irsch, & Crepel, 1994). This would enable dopamine to mod-
late cortical networks by decreasing the amplitude, duration
nd spread of activity among cortical neurons (Bandyopadhyay &
ablitz, 2007). Indeed, Williams and Millar (1990) have shown that
xcitation is increased at low levels of dopamine, whereas inhibi-
ion dominates at higher levels. A possible underlying mechanism
ould rely on the fact that NMDAR channels on pyramidal cells
nd interneurons express different sensitivities to dopamine levels
Muly et al., 1998). The authors proposed that for increasing levels of
opamine, pyramidal neurons begin increasing their response, and
each maximum response, at lower concentrations than interneu-
ons. This raises the possibility of a differential effect of dopamine
n NMDAR conductances of pyramidal neurons and interneurons
Brunel & Wang, 2001). Data on the effects of dopamine at the cel-
ular level must then be linked to data on the cellular correlates of
emantic priming at the behavioral level.

.5. Priming in monkeys

Electrophysiological recording of cortical neurons of monkeys

s the only way to probe the dynamics of neuronal activity at the
ellular level. Neurons firing rates can be correlated to priming in
onkeys performing pair associate tasks whose protocols are very

imilar to those used in human priming studies (Brunel & Lavigne,
n press). In such tasks, a ‘prime’ image is first shown, followed after
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delay period by a ‘target’ image. During the delay period, neurons
elective for the prime exhibit retrospective activity, that is they
aintain an elevated firing rate following presentation of the prime

Fuster & Alexander, 1971; Miyashita, 1988; Miyashita & Chang,
988), assumed to subtend short-term or working memory of a
timulus after its removal. In addition, neurons selective for a tar-
et associated to the presented prime exhibit prospective activity,
hat is their firing rate increases during the delay period following a
rime (Erickson & Desimone, 1999; Fuster, 2001; Miyashita, 1988;
iyashita & Chang, 1988; Naya, Yoshida, & Miyashita, 2001; Naya,

oshida, & Miyashita, 2003a; Naya, Yoshida, Takeda, Fujimichi, &
iyashita, 2003b; Rainer, Rao, & Miller, 1999; Sakai & Miyashita,

991; Yoshida, Naya, & Miyashita, 2003). Those populations of neu-
ons activated before the actual presentation of the target could
orrespond to the pre-lexical and anticipatory activation of the
arget corresponding to automatic priming in humans. Indeed,
riming-like effects are reported in monkeys, with shorter reac-
ion times on targets associated to the preceding prime than on
arget not associated (e.g., Erickson & Desimone, 1999). In addition,
pike rates of neurons coding for a given item are reported to pre-
ict behavioral data such as reaction time on this item (Roitman
Shadlen, 2002). Understanding of individual neurons dynam-

cs during semantic priming involves understanding the dynamics
f whole networks of neurons connected together with varying
ynaptic strengths between the prime and target.

.6. Computational models

Theoretical modeling allows relating network processes at the
ellular level to emerging properties of priming effects observed
t the behavioral level. Abstract ‘connectionist’ models are able
o account for some of the priming effects reported in humans
Anderson, 1976, 1983; Becker, Moscovitch, Behrmann, & Joordens,
997; Collins & Loftus, 1975; Collins & Quillian, 1969; Cree &
cRae, 2003; Cree, McRae, & McNorgan, 1999; Masson, Besner,
Humphreys, 1991; Moss, Hare, Day, & Tyler, 1994; Plaut, 1995;

laut & Booth, 2000; Quillian, 1967; Randall, Moss, Rodd, Greer,
Tyler, 2004; Sharkey & Sharkey, 1992). However these models

o not account for behavioral data in terms of biologically real-
stic neurons dynamics and network architecture, which prevents
imulation of the neuromodulation on the network behavior. Com-
utational models of cortical networks are proposed to account
or the monkey neurophysiological data based on realistic prop-
rties of neurons (Amit, 1995; Brunel, 1996, 2004; Wang, 2002).
hey account both for retrospective activity in working memory
Amit, Bernacchia, & Yakovlev, 2003; Amit & Brunel, 1997; Brunel &

ang, 2001; Haarmann & Usher, 2001; Renart, Moreno, de la Rocha,
arga, & Rolls, 2001) and prospective activity in paired associate
asks (Brunel, 1996; Lavigne, 2004; Lavigne & Denis, 2001; Lavigne

Denis, 2002; Mongillo, Amit, & Brunel, 2003). A recent approach
llowed modeling a large variety of priming effects reported in
uman within the common framework of a model of a cortical net-
ork (Brunel & Lavigne, in press). The synaptic hypothesis tested

y the authors have shown that variable synaptic strengths can
ccount for the variability in priming effects observed between the
erebral hemispheres and between healthy and schizophrenic sub-
ects. However the dependence of priming on the widely evoked
opamine neuromodulation is still to be tested. Cortical networks
odels allow testing for the effects of neuromodulation on ret-

ospective activity in working memory. In computational studies,

imulations of D1R activation show an increase of the resistance
f retrospective activity to distractors (Brunel & Wang, 2001;
urstewitz, Kroner, & Gunturkun, 1999; Durstewitz & Seamans,
002; Durstewitz, Seamans, & Sejnowski, 2000; Tanaka, 2002,
006; Wang, 2006; Yamashita & Tanaka, 2002; Yamashita & Tanaka,
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003). Furthermore, Brunel and Wang (2001) tested for the effect of
1R activation on the differential neuromodulation of NMDA recep-

ors on glutamatergic and gabaergic neurons (Muly et al., 1998).
he increase of the gain in membrane conductance was larger for
yramidal neurons at low levels of D1R activation, and larger for

nterneurons at high levels of D1R activation. Their results show
hat for intermediate values of D1R activation where the gain dif-
erence between pyramidal and interneurons is the largest, there is
window of increased signal-to-noise ratio leading to a bell-shaped
urve for the dependence of retrospective activity on D1R activation
Arnsten, 1998; Williams & Goldman-Rakic, 1995). Computational

odels then support the hypothesis that the activation of D1 recep-
ors changes the balance between the excitation and the inhibition
n cortical networks (Goldman-Rakic, Muly, & Williams, 2000; Muly
t al., 1998) to increase the signal-to-noise ratio (Cohen & Servan-
chreiber, 1992; Winterer, Coppola, Egan, Goldberg, & Weinberger,
003). Then, with respect to known data on the effects of dopamine
n cortical neurons at the cellular level, cortical network models can
ccount for the dependence of retrospective activity on D1R activa-
ion. Computational models are then good candidates to investigate
he effects of dopamine neuromodulation on prospective activity
nvolved in semantic priming. The main goal of the present research
s then to investigate to what extent biologically realistic cortical
etworks models can account for dopamine neuromodulation of
he magnitude of semantic priming. Such models have been suc-
essful in reproducing both electrophysiological data in monkey
nd a wide variety of behavioral findings on priming in human
epending on synaptic strengths. However, the neuromodulatory
ypothesis is still to be investigated in a modeling approach to test
or a link between dopamine and priming effects in the cerebral
emispheres and in schizophrenia.

. Materials and methods

We simulated a large-scale model of integrate and fire neurons for two main
easons. First, it allows us to implement separately synaptic currents induced by
ifferent receptors, i.e., AMPA (�-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
cid) and NMDA (N-methyl-d-aspartate) glutamate receptors, and GABAA (�-
minobutyric acid) receptors, allowing investigating the effects of dopaminergic
odulation on network behavior. Second, we can implement realistic sources of

oise leading to trial-to-trial variability, which enables to test for the statistical
ignificance of priming effects as a function of modulated signal-to-noise ratio.

The model is composed of NE excitatory pyramidal cells and NI inhibitory
nter-neurons, with NI = 0.25NE (Abeles, 1991; Braitenberg & Schütz, 1991) with

probability of C = 0.2 of having a synapse from any pre-synaptic neuron to
ny post-synaptic neuron (Fig. 1A). Neurons are connected through four types of
ynapses. Synaptic efficacies involving inhibitory neurons, excitatory to inhibitory
IE), inhibitory to excitatory (EI), inhibitory to inhibitory (II), are not subject to vari-
tion due to learning. Excitatory and inhibitory neurons receive external noise from
ther cortical areas, obeying a Poisson process of rate �ext leading to realistic val-
es of mean neurons activity of 3 Hz for excitatory neurons and 9 Hz for inhibitory

nterneurons (Burns & Webb, 1976; Koch & Fuster, 1989; Wilson & Goldman-Rakic,
994). Inhibitory interneurons are activated by excitatory neurons to prevent run-
way propagation of activation and regulate populations dynamics in the network.
xcitatory neurons encode p items, each item corresponding to a low fraction f � 1
f the total NE excitatory neurons. Synapses between neurons coding for a same
tem are potentiated at J1, synapses between neurons coding different and non-
ssociated items are depressed at J0, and synapses between different and associated
tems are potentiated at Ja.

Neurons of the network are leaky integrate-and-fire (IF) neurons (Tuckwell,
988). The state of a neuron is described by its depolarization V(t) (mV) obeying
he following equation:

m
dV(t)

dt
= −V(t) + I(t) (1)

here �m is the membrane time constant of excitatory cells (�E = 20 ms) and

nhibitory cells (�I = 10 ms) (McCormick, Steinmetz, & Thompson, 1985). I(t) is the
otal afferent synaptic current (in units of V) due to spikes arriving from presy-
aptic neurons. When V(t) reaches a threshold �, the neuron emits a spike and
is reset to V� , following a refractory period �RP. The total synaptic current

is the sum of receptor-dependent currents evolving with their own dynam-
cs and due to recurrent excitatory and inhibitory activities, external noise and
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Fig. 1. (A) Architecture of the excitatory-inhibitory network: excitatory neurons
are divided in p subpopulations of neurons selective for distinct stimuli. Inhibitory
n
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eurons are non-selective. (B) Protocol presenting trials with 350 ms SOAs used in
riming simulations: spontaneous activity for 50 ms, prime input for 200 ms, delay
inter-stimuli interval, ISI for 150 ms), target input for 200 ms and post-target delay
or 50 ms.

nput stimuli (Eq. (2)):

= gxINMDA rec + (1 − x)IAMPA rec + IGABA rec + (1 − x + �) IAMPA ext (2)

here x, (1 − x), is the fraction of excitatory currents induced by NMDARs (AMPARs),
nd IGABA the current induced by GABAARs. Iext is the external current induced by
oise which we assume to be induced by AMPARs only. � is the contrast of the exter-
al afferent input over external noise, equal to 0 when no input is presented to the
etwork and 0.1 for a given neurons population when the neuron receives selec-
ive afferents when the specific item is presented to the network with a rate ��ext
Mongillo et al., 2003). g is the gain of excitatory currents induced by NMDAR of glu-
amatergic and gabaergic neurons, differentially modulated by dopamine activation
f D1R, according to Eq. (3) (see Fig. 3A):

NMDA = 1 + r

1+exp(n − D1/0.25)
(3)

here D1 is the level of D1R activation by dopamine, r = 0.3 is the ratio of neu-
omodulation of the gain of NMDARs induced excitatory currents, and nglu = 0.8
nd nGABA = 1.2 are the factors of differential neuromodulation of glutamatergic and
abaergic neurons NMDAR currents, respectively.

Individual excitatory and inhibitory post-synaptic currents Is obey the Eq. (4):

s
dIs (t)

dt
= −Is(t) + �m J

∑
k

ı(t − tk − ıs) (4)

here J is the synaptic efficacy (mV) corresponding to the total charge transmit-
ed across the synapse by a single spike described as an instantaneous current
njection. ıs is the synaptic delay and tk the time of synaptic activation due to
he kth spike. Upon the emission of a presynaptic spike, the post-synaptic cur-

ent has, following a delay ıs specific to the type of excitatory or inhibitory neuron,
n instantaneous jump proportional to the efficacy J, followed by a an exponential
ecay with time constant �s. Different �s account for the different receptors involved
Hestrin, Sah, & Nicoll, 1990; Salin & Prince, 1996; Spruston, Jonas, & Sakmann, 1995;
iang, Huguenard, & Prince, 1998): AMPARs (fast activation and decay, �AMPA = 2 ms),
MDARs (slow activation and decay, �NMDA = 100 ms) and GABARs (fast activation
nd decay, �GABA = 2 ms).

P

P

w

P

ologia 46 (2008) 3074–3087

.1. Scenarios of semantic structures of stimuli and associated synaptic matrix

10 items are encoded within the network by 10 populations of neurons. Neurons
oding for unrelated, same, and related items are associated with synapses of value

0, J1, and Ja = J0 + a(J1 − J0), respectively. Synaptic connectivity embeds various types
f prime-target relations according to matrix 5, with a taking values a′ , b′ and c′ . For
larity 0, 1, a’, b′ and c′ account for J0, J1, and Ja′ , Jb′ and Jc′ , respectively:

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 b′ 0 0 0 0 0 0 0 0
b′ 1 b′ 0 0 0 0 0 0 0
0 b′ 1 b′ 0 0 0 0 0 0
0 0 b′ 1 0 0 0 0 0 0
0 0 0 0 1 a′ c′ 0 0 0
0 0 0 0 a′ 1 0 b′ 0 0
0 0 0 0 c′ 0 1 0 b′ 0
0 0 0 0 0 b′ 0 1 0 b
0 0 0 0 0 0 b′ 0 1 b′
0 0 0 0 0 0 0 b′ b′ 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5)

uch a synaptic matrix enables to test for: step1 priming as a function of associa-
ion strength on target 6 (strong associate; a′ = 0.8) and 7 (weak associate; c′ = 0.5)
ollowing related prime 5 and on target 9 (medium associate; b′ = 0.7) following
elated prime 10 vs. unrelated prime 1 (Fig. 2); step2 priming on target 3 following
elated prime 1 vs. unrelated prime 5 (a′ = 0.7; Fig. 3). A total of 220 simulation trials
ere run on the following 22 inter-trial conditions: with regard to step1 priming: 2
rime-target relatedness (related vs. unrelated) ×3 association strength (a′ = 0.8 vs.
′ = 0.7 vs. c′ = 0.5) ×2 levels of D1 of D1R activation (1 vs. 1.5); with regard to step2
riming: 2 prime-target relatedness (related vs. unrelated) ×5 levels D1 (0 vs. 0.5
s. 1 vs. 1.5 vs. 2). Such a synaptic structure is heterogeneous, which makes it real-
stic with regard to experimental conditions where variable numbers of associated
tems and association strengths are likely to be present. Model parameters are given
n Table 1.

Each cycle in the network (dt = 0.1 ms � �) consists in updating spikes receptions
nd discharges for every neuron, and computing spike rates of neurons populations
10 ms bins). The 220 simulation trials were computed at a mean speed of 3 ms per
econd on a 3 GHz PIV computer.

.2. Protocol

Experimental protocols used in humans are emulated in the cortical network
odel to investigate the variety of priming effects in terms of neurons populations

ynamics. Priming effects are tested according to experimental protocol displayed in
ig. 1B: first 200 ms without any input (the last 50 ms are displayed); then the prime
as displayed for t1 = 200 ms, followed by a delay periods td = 150 ms with no selec-

ive input (inter-stimuli interval, ISI), which defined a stimulus onset asynchrony
f 350 ms (SOA = t1 + td); finally the target was displayed for 200 ms, followed by
0 ms with no input before the end of trial. A trial begins with the network in a state
f spontaneous activity. When the prime is displayed, the corresponding neurons
opulation reaches an elevated activity (‘visual response’). After prime removal, the
xcitatory connectivity is strong enough so that these neurons do not come back
o spontaneous activity, but rather exhibit retrospective persistent activity. The ele-
ated activity of such neurons leads in turn to activation of populations of neurons
oding for related stimuli. Hence, at the time of the presentation of the target, neu-
onal populations that code for associated step1 and step2 targets exhibit increased
ring rates corresponding to prospective activity. Recognition or response times to
given item are usually computed as proportional to its level of activation in mem-
ry (Bullinaria, 1995; Masson, 1995; Masson et al., 1991; Plaut, 1995; Plaut & Booth,
000; Randall et al., 2004). Electrophysiological studies have reported that spike
ates of neurons coding for a given response are negatively correlated to response
imes (Roitman & Shadlen, 2002). Based on this experimental data, many modeling
pproaches in cortical networks take the reaction time to be the time at which the
ean spike rate of a population of neurons reaches a prescribed threshold (Brunel
Lavigne, in press; Wang, 2002; Wong & Wang, 2006), similar to classical diffusion
odels of reaction time (Ratcliff, 1978). Then, when a target is displayed to the cor-

ical network, its recognition time T� is the time elapsed from target onset to the
nstant at which the mean firing rate of the corresponding neurons population rises
or the first time above a threshold �� . For a given target, T� depends on the level of
rospective activity of the neurons population coding for this target at target onset,

tself assumed to depend on the synaptic matrix and preceding prime. The target
an follow a related (R), unrelated (U) or no (neutral, N) prime, leading to specific
ecognition times T�

R , T�
U and T�

N, respectively. These response times enable to quan-
ify the activatory (Eq. (6)) and inhibitory (Eq. (7)) components of priming effects
Eq. (8)):

� �
Eact = TN − TR (6)

Einh = T�
N − T�

U (7)

ith the global priming effect calculated as:

E = PEact − PEinh (8)
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Fig. 2. Effects of neuromodulation on Step1 priming effects (see Fig. 3A for differ-
ential neuromodulation of the gain g of NMDARs conductances by D1R activation).
(A) Neuromodulation of the magnitude of Step1 priming effects for relevant values
of D1R activation D1 = 1 and D1 = 1.5, as a function association strength a. Rela-
tive magnitudes of Step1 priming of strong (a′ = 0.8), medium (b′ = 0.7) and weak
(c′ = 0.5) associates (green triangles), as difference between response times in the
unrelated (gray circles) and related (green squares) conditions, are calculated as
ratios of priming in each condition of D1R activation and association strength over
mean value of priming of strong associates for D1 = 1. Step1 priming increases
with association strength (p < 0.05). Step1 priming does not depend on D1R acti-
vation and the effect of strength is significant for D1 = 1.5 (p < 0.01) but not for
D1 = 1 (ns). The effect of D1 activation on priming of weak step1 associate is due
to variations in response times on related target (green squares; p < 0.01) but not
to variations in response times on unrelated targets (gray circles; ns). (B1–2) Rep-
resentative trials showing populations spike rates for weak and strong associates
as a function of time for D1 = 1 and 1.5, respectively, according to the protocol C
(see Fig. 1B). Priming effects are indicated by the difference between dark (light)
green (strong or weak associate) and dark (light) gray (same items but unre-
lated) spotted vertical lines that indicate trial averaged time from target onset for
targets population activity to reach over-threshold activity �� = 30 Hz. Horizontal
dark (light) green bars indicate trial averaged magnitude of Step1 priming effects
on strong (weak) associates modulated by D1R activation (D1 = 1 and 1.5) due to
modification of reaction times in the related condition (T�

R strong = 123 and 131;

T�
R weak

= 175 and 198; p < 0.5) but not in the unrelated condition (T�
U strong =

204 and 190; T�
U weak

= 222 and 218; ns) (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of the article).

Table 1
Parameters of the model of IF neurons

NE Number of excitatory neurons 4000
NI Number of inhibitory neurons 1000
C Connectivity 0.2
CE Number of recurrent excitatory, Connections

per neuron
800

Cext Number of external excitatory, Connections per
neuron

2200

CI Number of recurrent inhibitory, Connections
per neuron

200

p Number of items 10
NEp Number of neurons per item 400
f Coding level NEp/NE
�mE Membrane time constant, excitatory neurons 20 ms
�mI Membrane time constant, inhibitory neurons 10 ms
�� Firing threshold, both types 20 mV
V�E Reset membrane potential, excitatory neurons 10 mV
V�I Reset membrane potential, inhibitory neurons 15 mV
�RP Refractory period, both types 2 ms
JEE Average E → E efficacy 0.05 mV
JIE E → I efficacy 0.1 mV
JEI I → E efficacy 0.3 mV
JII I → I efficacy 0.5 mV
JEext External E → E efficacy 0.052 mV
JIext External E → I efficacy 0.1 mV
J1 Potentiated E → E efficacy between neurons

coding for a same item
0.095

a Association strength, between associated items a′ = 0.5, b′ = 0.7, c′ = 0.8
Ja Potentiated E → E efficacy between associated

items
J0 + a(J1 − J0)

J0 Depressed E → E efficacy between
non-associated items

(JEE − fJ1)/(1 − f)

�AMPA Synaptic decay type, AMPA-R 2 ms
�NMDA Synaptic decay type, NMDA-R 100 ms
�GABA Synaptic decay type, GABA-R 5 ms
x Fraction of NMDA currents 0.3
D1 Activation of D1 receptors to DA 0, 0.5, 1, 1.5, 2
g Gain of NMDA-R conductances of

glutamatergic and gabaergic neurons
See Eq. (3)

ıE Latency (transmission delay), excitatory
neurons

15–30 ms

ıI Latency (transmission delay), inhibitory
neurons

0.5 ms

�ext External Poisson noise 15 Hz
�

�
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Contrast of external input 0.1
� Threshold for reaction time 30 Hz

. Results

During the delay period following prime presentation to the
etwork, neurons coding for the prime exhibit retrospective activ-

ty while neurons coding for associated items exhibit prospective
ctivity. Several neurons populations are activated simultaneously
n the network’s working memory (Amit et al., 2003; Brunel, 1996;
aarmann & Usher, 2001; Lavigne, 2004), allowing the network

o activate step1 and step2 associates. Because of the increased
onnection strength (as measured by the parameter a) between
hat population and the populations coding for associated stimuli,
hese populations have enhanced firing rates compared to baseline.
ence, when the second stimulus shown is associated to the first

hrough step1 and step2 associations, the corresponding popula-
ion has initially a higher firing rate than if the first stimulus had not
een shown. It then reaches the threshold for recognition �� faster
han an unrelated target. Differences in the response times exhib-
ted by the network correspond to priming effects. Simulations
ere performed for different prime-target pairs based on synaptic
atrix (5). In the simulations, the firing rates of neurons popula-

ions coding for items not relevant for a given scenario remain at
he level of spontaneous activity. For clarity, those as well as firing
ates of inhibitory neurons, are not displayed in figures.
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Fig. 3. Effects of neuromodulation on Step2 priming effects. (A) Differential neu-
romodulation of the gain g of NMDARs conductances of glutamatergic (continuous
line) and gabaergic (dashed line) neurons as a function of D1R activation by
dopamine (see Eq. (3)). (B) Neuromodulation of the magnitude of Step2 priming
effects by D1R activation for b′ = 0.7. Relative magnitudes of Step2 priming (blue
triangles), as difference between response times in the unrelated (gray circles) and
related (blue squares) conditions, calculated as ratios of priming in each condition
of D1R activation over priming for D1 = 1. Step2 priming magnitude follows a bell
curve, being maximal for D1 = 1 and diminishing with both decreasing D1R activa-
tion for D1 ≤ 1 (p < 0.05) and increasing D1R activation for D1 ≥ 1 (p < 0.05), due to
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Results presented in Figs. 2B and 3C are in accordance with
riming effects reported in the literature in humans (see Neely,
991), with the increase (decrease) in prospective activity of tar-
ets neurons when preceded by a related (unrelated) prime in
europhysiological studies in monkeys (Fuster & Alexander, 1971;
iyashita, 1988; Miyashita & Chang, 1988) and with results of com-

utational models of priming (Brunel, 1996; Brunel & Lavigne, in
ress; Deco & Rolls, 2005; Lavigne, 2004; Lavigne & Denis, 2001;
avigne & Denis, 2002; Mongillo et al., 2003). The present results
how that all of step1 (Fig. 2) and step2 (Fig. 3) targets are activated
ollowing a related prime. The model exhibits larger priming mag-
itude on step1 associates than on step2 associates, according to
he experimental literature in human (Arnott et al., 2003; Hill et
l., 2002; Kiefer et al., 2005; McNamara, 1992; Moritz et al., 2002;
ossell et al., 2000) and to results of the mean field model (Brunel
Lavigne, in press). The greater priming of step1 than step2 targets

epends on the necessity for step1 target to be activated in order to
n turn activate step2 target. Besides, when step2 target becomes
ctivated, the feedback inhibition becomes stronger because both
he prime and step1 target are already activated.

The network of integrate and fire neurons proposed here per-
its to differentiate time constants of the different membrane

eceptors AMPARs, NMDARs and GABARs, allowing to differentially
euromodulate the gain of NMDARs currents in glutamatergic and
abaergic neurons by D1R activation. We first studied if neuromod-
lation could replicate hemispheric difference in step1 priming,
ith the left hemisphere exhibiting focused priming of mainly

trong associates, and the right hemisphere exhibiting extended
riming of strong and weak associates (Fig. 2). If so prospective
ctivity leading to priming effects should vary with the level D1
f D1R activation. Data from Brunel and Lavigne (in press) show
hat prospective activity of neurons encoding a target depend on
etrospective activity of neurons encoding the prime. In addition,
ata from Brunel and Wang (2001) show the largest increase in ret-
ospective activity for decreasing D1 between values of 1 and 1.5.
o focus models simulations on the range of variation of D1 were
euromodulatory effects on priming were the most expected, test
rials were first made to compare the magnitudes of priming for val-
es of D1 of 1 and 1.5 (Fig. 2A). Statistical analyses of variance show
hat step1 priming is significant on both strong and weak associates
both p < 0.01), and is stronger on strong than on weak associates
p < 0.05). D1R activation modulates the magnitude of priming of
eak associates (p < 0.01) but not of strong associates (ns). Priming
odulation depends on variations in reaction times in the related

ondition but not in the unrelated condition (Fig. 2A). To test if the
evel of activation of related targets was increased in priming, and
ot the level of inhibition of unrelated target decreased, prospec-
ive activities of strong and weak step1 associates were calculated

s trial average spike rates of corresponding neurons populations
uring delay (ISI) (Fig. 2B1–2). Rate of prospective activity is higher
or strong than weak step1 associate (p < 0.001), and D1R activation

odulates the level of prospective activity of weak step1 associates
p < 0.05) but not of strong step1 associates (ns).

ariations in response times on related (blue squares) but not on unrelated (gray
ircles) targets. (C1–3) Representative trials showing populations spike rates as a
unction of time for D1 = 1, 1.5 and 2, respectively, according to the protocol D (see
ig. 1B). Priming effects are indicated by the difference between blue (related) and
ray (unrelated) spotted vertical lines that indicate trial averaged time from tar-
et onset for targets population activity to reach over-threshold activity �� = 30 Hz.
orizontal blue bars indicate trial averaged magnitude of Step2 priming effects mod-
lated by D1R activation (D1 = 1, 1.5 and 2) due to modification of reaction times

n the related condition (T�
R

= 136 ms, 155 ms and 170 ms; p < 0.5) but not in the

nrelated condition (T�
U

= 204 ms, 208 ms and 190 ms; ns) (For interpretation of
he references to color in this figure legend, the reader is referred to the web version
f the article).
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Second, we studied if differential gain modulation (Fig. 3A) could
ccount for greater step2 priming in the right than in the left hemi-
phere (Fig. 3B). Simulations data show a main priming effect of
tep2 associates (p < 0.001) and of modulation (p < 0.01). We first
xplored the modulation of step2 priming within the same range
f variation of D1R activation as for step1 priming (between 1 and
.5). Results show that the magnitude of step2 priming increases
ith decreasing D1 (Fig. 3B and 3C1–2; p < 0.05). Then, dopamine

ppears to modulates the magnitude of step2 priming and step1
riming of weak associates, but not of step1 priming of strong
ssociates. Taken together, modulatory effects of dopamine depend
n both association strength and step, with variable levels of D1
ubtending priming of direct and strong associates in both hemi-
pheres and priming of indirect or weak associates mainly in the
ight hemisphere. A less DA irrigated right hemisphere (D1 ≈ 1)
ould subtend extended priming of weak and strong step1 asso-

iates as well as of step2 associates. A prime presented in the
VF-RH would then spread its activation to all of its close and remote
ssociates. A more DA irrigated left hemisphere (D1 ≈ 1.5) would
ubtend focused priming of strong step1 associates rather than of
eak step1 and step2 associates. A prime presented in the RVF-

H would then activate only its close and strong associates. This
upports the hypothesis that differential neuromodulation of the
eft and right hemispheres can lead to different semantic coding,
ocused or extended, respectively.

We then investigated to what extend dopamine neuromod-
lation is a possible mechanism underlying priming differences
etween healthy subjects and schizophrenic patients. At the short
OAs at which priming effects are investigated in the present
esearch, several data report increased magnitudes of priming
hyper-priming effects) involving step1 (refs) and step2 rela-
ions, especially in patients exhibiting thought disorders (Chenery,
opland, McGrath, & Savage, 2004; Manschreck et al., 1988; Moritz
t al., 2002; Spitzer et al., 1993a,b; see Minzenberg et al., 2002).
he models behavior exhibits an increase of step1 priming of weak
ssociates and of step2 priming when D1 decreases (from 1.5 to 1),
upporting the hypothesis that weaker D1R activation can subtend
yper-priming in schizophrenia. Step2 relations exhibit the most
eliable hyper-priming effects in thought disordered patients (see
ischka et al., 1996). The possibility that low levels of D1R acti-
ation in schizophrenic patients could subtend hyper-priming is
upported by data reporting hypo-priming in healthy subjects with
-dopa or D1R agonists (Copland et al., 2003; Kischka et al., 1996;
oesch-Ely et al., 2006). These two mirror effects are accounted
or by the model within the range of variation of D1 between 1
nd 2. However, when exploring the range of neuromodulation
f step2 priming, models results show that the increasing magni-
ude of step2 priming for decreasing values of D1 extends to values
etween 1 and 2 (Fig. 3B and 3C2–3). This means that from a given
alue within this range (e.g., D1 = 1.5), a decrease leads to hyper-
riming and an increase leads to hypo-priming. When scanning the
hole range of D1 between 0 and 2, the models behavior exhibits

hat the modulation of the magnitude of step2 priming follows a
ell-curve (p < 0.05) as is the case for retrospective activity (Brunel
Wang, 2001). Step2 priming is reduced for too small D1R acti-

ation where NMDA receptor mediated excitation is too weak, and
or too large D1R activation where gain modulation saturates on
yramidal cells receptors but not yet on interneurons receptors,
he net effect being an enhanced inhibition. Thus, there is an opti-

al range of D1R activation leading to bell-shaped curve for the

ependence of step2 priming on D1R modulation. This suggests
hat hypo-dopaminergic states can lead to hyper- or hypo-priming
s a function of the precise level of D1R activation considered. With
egard to the facilitatory or inhibitory component of priming (see
eely, 1991) that is modulated, the reported variations in the mag-
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itude of step2 priming are due to variations in response times on
elated target (p < 0.001) and not to variations in response times
n unrelated target (ns) (see Lecardeur et al., 2007 for a discus-
ion). Response times also depend on the threshold �� at which
pike rates trigger a response. In the range of D1 between 1 and
were step2 priming effects vary monotonously, response times

alculated for �� , �� − 10% and �� + 10% increase (decrease) when
hreshold increases (decreases; p < 0.05). However neither the mag-
itude of step2 effects nor the effects of D1R activation on step2
riming depend on threshold (both effects ns). Effects of D1R activa-
ion on the magnitude of priming effects are actually caused by the

odulation of prospective activity of step2 associates, calculated
s trial average spike rates of corresponding neurons populations
uring the delay (Fig. 3C1–3). For example, when D1 decreases from
to 1, prospective activity of step2 associates increases (p < 0.05)

nd activity of unrelated items is not modified (ns).

. Discussion

The present research shows that biologically realistic corti-
al network models allow linking the mechanisms of dopamine
euromodulation at the cellular level with the variability of the
agnitude semantic priming effects at the network level. Prim-

ng effects are due to activation of the target-specific neurons by
rime-specific neurons after presentation of the prime, similar to
he observed prospective activity in monkey experiments. They
epend on the level of prospective activity of neuronal popula-
ions, determining the response time at which its activity reaches
given threshold. Priming magnitude is accounted for by neurobi-
logical parameters such as neuronal or synaptic time constants or
trength of synaptic connections encoding the semantic relation-
hips between the items. The model of integrate and fire neurons
eplicates the sharp transitions of the level of activation and the
ariable transition times, due to the stochastic behavior of large and
oisy neural structures (see Mongillo et al., 2003). The prospective
ctivity of targets neurons is supported by neurophysiological data
n monkeys (e.g., Miyashita, 1988; Sakai & Miyashita, 1991). Studies
n monkeys report prospective activity leading to simple associa-
ive priming effects in the temporal areas (mostly anterior–inferior;
akeda, Naya, Fujimichi, Takeuchi, & Miyashita, 2005; Naya et al.,
001, 2003a,b; Yoshida et al., 2003; Erickson & Desimone, 1999;
akai & Miyashita, 1991) which are involved in associative memory
see Buckley & Gaffan, 1998a; Buckley & Gaffan, 1998b; Murray,
affan, & Mishkin, 1993). In addition, fMRI studies in human

eport that both frontal and temporal areas contribute to priming,
ith greater effects for step1 than for step2 associates (Tivarus,

binson, Hillier, Schmalbrock, & Beversdorf, 2006). Hemodynamic
esponses revealed step1 priming primarily within the inferior pre-
rontal cortices and step2 priming primarily within the temporal
ortices, with enhanced responses predicting thought disorder in
chizophrenic patients (Kuperberg, Deckersbach, Holt, Goff, & West,
007). Altogether, These studies suggest that the neuronal substrate
or the neuromodulation of priming in human would spread over
T and PF networks in dynamic interactions.

The cortical network model presented here exhibits simultane-
us activation of several neurons populations in stable attractor
tates in working memory (Amit et al., 2003; Brunel, 1996;
aarmann & Usher, 2001; Lavigne, 2004). A working memory
apacity of several items (Haarmann & Usher, 2001; Luck & Vogel,
997) allows prospective activity of several step1 and step2 neurons

opulations associated to a prime. The precise level of prospective
ctivity depends on the ratio of activation/inhibition received by
ctivated neuronal population (Brunel, 1996; Amit & Brunel, 1997).
n the model network, prospective activity of step1 associates arises
apidly in a few tens of milliseconds (Beauvillain & Segui, 1983;
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ischler, 1977; Fischler & Goodman, 1978; Lee et al., 1999; Lukatela
Turvey, 1994; Perea & Gotor, 1997; Perea & Rosa, 2002; Rastle,

avis, Marslen-Wilson, & Tyler, 2000; Sereno, 1991).

.1. Neuromodulatory effects on hemispheric semantic coding

The model of integrate and fire neurons shows that discrimina-
ion between priming of strong and weak associates can vary with
he level of differential dopaminergic neuromodulation of NMDARs
f glutamatergic and gabaergic neurons. Within this framework,
rocessing of a prime generates different levels of associated targets

signals’ above background noise depending on neuromodulation.
ithin the range of D1R activation between 1 and 2, high levels of

1R activation induce focused activation of strong and step1 asso-
iates. This corresponds to focused priming of small semantic fields
uch as reported mainly in the RVF-LH. Low levels of D1R activation
nduce extended activation of step2 and weak step1 associates. This
orresponds to extended priming of large semantic fields such as
eported mainly in the LVF-RH (Beeman et al., 1994, 2000; Beeman

Chiarello, 1998; Chiarello et al., 2003; Jung-Beeman, 2005). Dif-
erences in DA neuromodulation can set the network in a focused
r extended mode of semantic processing. These results can also
ccount for stronger step2 priming in the LVF-RH than in the RVF-LH
Richards & Chiarello, 1995; Yochim et al., 2005). Both hemispheres
ould then contribute to semantic processing in different ways;

he LH would be more involved in processing of dominant and
ontext-specific information (Hutchinson et al., 2003), while the
H would be more involved in integrating large discourse repre-
entations (e.g., Kaplan, Brownell, Jacobs, & Gardner, 1990) such
s metaphors (Brownell, Simpson, Bihrle, Potter, & Gardner, 1990;
inner & Gardner, 1977).

.2. Schizophrenia

Simulation data on step2 priming are in agreement with exper-
mental data reporting that activation of D1R at the cortical level
an diminish the magnitude of step2 priming on healthy subjects
Copland et al., 2003; Kischka et al., 1996) especially in the left
emisphere (Roesch-Ely et al., 2006). Model results support the
ypothesis that an increase in cortical dopamine, such as under
tress (see Kischka et al., 1996), would lead to focused priming of
tep1 associates but not of step2 associates. Interestingly, the sym-
etric behavior of increased step2 priming when D1R activation

ecreases is in accordance with experimental data reporting hyper-
riming in schizophrenic patients (Arnott et al., 2003; Chenery et
l., 2004; Manschreck et al., 1988; McDonald, Brown, & Gorell, 1996;
oritz et al., 2002; Spitzer et al., 1993a; Spitzer et al., 1993b; see
inzenberg et al., 2002). In addition, simulations show that the pat-

ern of hyper- or hypo-priming reported in schizophrenic patients is
ensitive to the precise level of D1R activation. For decreasing neu-
omodulation from highest to medium values, step2 targets exhibit
yper-priming. When D1R activation further decreases to the low-
st values, the model exhibits hypo-priming such as reported in
ome studies (see Barch et al., 1996; Besche et al., 1997; Gouzoulis-
ayfrank et al., 2003).

.3. Neuromodulatory and synaptic hypothesis of priming
ariability

Model results support the hypothesis that differential neuro-

odulation between the two hemispheres, as well as between

ealthy and shizophrenic subjects, can exhibit different priming
ffects as a function of step, synaptic strength and level of D1R
ctivation. The model results show that the precise level of D1R
ctivation is a critical parameter determining the pattern of hyper-

t
a
a
p

ologia 46 (2008) 3074–3087

r hypo-priming obtained, due the bell-shaped curve describing
he dependence of priming effects on D1R activation. The present
esearch shows that neuromodulation of a cortical network of
ntegrate and fire neurons at the receptor level can lead to differen-
ial variability of step1 and step2 priming such as reported in the
iterature. This suggests a link between hemispheric differences
nd priming dysfunctions in schizophrenia based on a common
echanism of normal or abnormal dopamine neuromodulation
parallel research used the mean field approach to test for the

ffects of differential synaptic potentiation on the magnitude of
riming (Brunel & Lavigne, in press). It showed that differential

evels of synaptic transmission can account for inter hemispheric
ifferences in priming as well as for some perturbations in
chizophrenia, in accordance with the synaptic hypothesis of dif-
erent microcircuitries of the left and right cortical areas (Beeman &
hiarello, 1998; Hutsler & Galuske, 2003; Jung-Beeman, 2005; see
aluske, Schlote, Bratzke, & Singer, 2000). In addition, differences

n synaptic transmission could rely on structural differences of
ssociation fibers at the cellular level and/or on aberrant control
f synaptic plasticity in schizophrenic patients through NMDAR
ypofunction (Hoffman & McGlashan, 1993; Javitt & Zukin, 1991;
hillips & Silverstein, 2003) or abnormal dopaminergic modu-
ation of NMDAR (Stephan, Baldeweg, & Friston, 2006) and/or
bnormal (Braver, Barch, & Cohen, 1999; Cohen, Barch, Carter, &
ervan-Schreiber, 1999; Cohen & Servan-Schreiber, 1992). Then
he issue could be not to pick out one or the other hypothesis, i.e.,
euromodulatory or synaptic, but to understand their synergetic
ctions on priming. In cortical networks NMDAR hypofunction and
euromodulation bias neurons retrospective activity (Brunel &
ang, 2001) which determine synaptic learning between neurons

opulations (Amit & Mongillo, 2003; Mongillo et al., 2003; Brunel,
996). The present study shows in turn that synaptic efficacy deter-
ines the sensibility of retrospective and prospective activities to

euromodulation to modify the magnitude of semantic priming
ffects. Though accounting for a large part of the results in the
iterature, the present study focused on the dopaminergic hypoth-
sis and does not bring strictly identical results to the one focused
n the synaptic hypothesis (Brunel & Lavigne, in press). Synaptic
ffects tested by the authors predict enhanced contrast between
riming of strong vs. weak step1 associates in the left compared
o the right hemisphere. This occurred through combined increase
f priming of strong associates and decrease of priming of weak
ssociates. Neuromodulatory effects tested with the model of inte-
rate and fire neurons predict enhanced contrast for higher values
f D1R activation through a decrease of priming of weak associates
ithout increased priming of strong associates. These predictions

uggest that further experimental studies, comparing step1 prim-
ng of strong and weak associates in the two hemispheres or in
chizophrenic patients, could give good insights on the type of
euromodulatory or synaptic effect primarily involved. Predictions
f the models may also help conducting experiments testing for
he neuromodulatory or synaptic effects by testing experimentally
tep2 priming as a function of association strength, in divided visual
eld experiments. This points to the importance of precisely mea-
uring and controlling the type of relation and association strength
nvolved in prime-target pairs used as experimental material.

. Conclusion
In this research we have focused on the most consensual data in
he literature regarding the possible relations between dopamine
nd magnitude of semantic priming. However, conflicting results
re somewhat reported on the possibility for either hypo- or hyper-
riming in schizophrenia. Further modeling approaches may be
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ruitful in systematically exploring larger ranges of variations of
hose parameters, adding the prime-target delay, and define more
recise predictions. The present results of the model show that
he type of relation involved, association strength and level of
1R activation, co-influence priming magnitude. This points to

he importance of estimating the level of D1R activation in par-
icipants to experiments, and test priming effects in healthy vs.
chizophrenic patients under controlled dosages of DA vs. NMDA
gonists/antagonists. More anatomical and neurochemical data is
learly needed, to better understand the synaptic and neuromodu-
atory hypothesis on semantic priming. The reciprocal enrichment
f the experimental and modelling approaches is twofold: com-
utational modelling is a way to give a unified account of various
ypes of data and test for the effect of neurophysiological factors
nfluencing priming that are difficult to measure and quantify; and
ehavioral and neurophysiological data enable elaborating more
ealistic models of cortical networks to bridge the gap between the
ellular and behavioral levels.
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