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Abstract

■ Recall and language comprehension while processing se-
quences of words involves multiple semantic priming between
several related and/or unrelated words. Accounting for multiple
and interacting priming effects in terms of underlying neuronal
structure and dynamics is a challenge for current models of se-
mantic priming. Further elaboration of current models requires
a quantifiable and reliable account of the simplest case of multiple
priming resulting from two primes on a target. The meta-analytic
approach offers a better understanding of the experimental data
from studies on multiple priming regarding the additivity pattern
of priming. Themeta-analysis points to the effects of prime–target

stimuli onset asynchronies on the pattern of underadditivity,
overadditivity, or strict additivity of converging activation from
multiple primes. The modeling approach is then constrained by
results of the meta-analysis. We propose a model of a cortical
network embedding spike frequency adaptation, which allows
frequency and time-dependent modulation of neural activity.
Model results give a comprehensive understanding of the meta-
analysis results in terms of dynamics of neuron populations. They
also give predictions regarding how stimuli intensities, associa-
tion strength, and spike frequency adaptation influence multiple
priming effects. ■

INTRODUCTION

Language comprehension involves contextual recall of
knowledge in memory in real time. This fundamental
cognitive function relies on the increased availability of
concepts in memory due to activation of other concepts
related to the words being processed. Such semantic prim-
ing effects correspond, at the behavioral level, to shorter
RTs in processing target words (e.g., “butter”) when a pre-
ceding prime word was related (e.g., “bread”) than when it
was unrelated (e.g., “tree”) (Meyer, Schvaneveldt, & Rudy,
1972; Meyer & Schvaneveldt, 1971). Investigating the de-
terminants of priming effects and specifying their under-
lying cognitive processes has become a fast growing field
of research (Hutchison, 2003; Neely, 1991). Current models
of semantic priming aim to account for single priming
effects—in terms of whether processing of related word
pairs has activating effects or inhibiting effects on the status
of the corresponding concepts in memory (for a discussion,
see Brunel & Lavigne, 2009). However, processing of se-
quences of more than two words triggers multiple and inter-
acting priming effects between several words presented at
different times. How the cerebral cortex performs sequen-
tial and simultaneous semantic priming processes is poorly
understood. Answering this question implies understanding
the dynamics of the cortical network that underlie the com-
plex interactions between multiple priming processes. Tak-

ing up the challenge requires identification of cognitive,
procedural, and cellular factors that determine the balance
between priming from previous and from current words in
a sequence and that direct semantic activation within the
semantic space.

Pattern of Additivity of Multiple Priming

The simplest case of multiple priming involves a target that
is related (R) or unrelated (U) to two preceding primes
(labeled 1 and 2). The experimental operationalization of
the relatedness between two primes and a target generates
four conditions: RR, RU, UR, and UU—wherein the first
and second letter correspond to the type of relationship
between the target and the first and second prime, respec-
tively. A given target (e.g., “tiger”) can then be preceded
by two primes related to it (RR condition, e.g., “lion” and
“stripes”), two primes unrelated to it (UU condition, e.g.,
“fuel” and “shutter”), or one prime related and one prime
unrelated (RU condition, e.g., “lion” and “shutter” or UR
condition, e.g., “fuel” and “stripes”). In the previous exam-
ples, the two primes are not related to each other, but
primes can be related in some cases (e.g., “copper” and
“bronze” are related to the target “metal” and are also re-
lated to each other) without affecting significantly the
magnitude of RR priming effects (See Balota & Paul,
1996, Table 1 for examples and Experiment 1 for results).
When primes are labeled in such a way that differentiatesUniversité de Nice-Sophia Antipolis
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the RU and the UR conditions, these labels are defined
according to their order of presentation or position in the
visual field. Multiple priming effects are calculated by sub-
tracting RTs in a given condition of prime–target related-
ness (RR, RU, UR) from RTs in the UU baseline condition
(see Equation 6). Regarding the RR condition, the target
is assumed to receive converging sources of activation
from the associated primes (Balota & Paul, 1996), in accor-
dance with studies that report an increasing magnitude
of priming in conjunction with an increasing number of
primes related to the target (Abad,Noguera,&Ortells, 2003;
Chwilla & Kolk, 2003; Faust & Lavidor, 2003; Faust &
Kahana, 2002; Nievas & Mari-Beffa, 2002; Ortells, Abad,
Noguera, & Lupianez, 2001; Beeman, Friedman, Grafman,
& Perez, 1994; Brodeur & Lupker, 1994; Klein, Briand,
Smith, & Smith-Lamothe, 1988; Schmidt, 1976). A synthetic
way of describing multiple priming effects is to compare
the effects of two related primes (RR)—assumed to trigger
converging facilitation—with the sum of the effects of one
related and one unrelated prime (RU + UR; Equation 7).

Three patterns of RR effects can then be defined de-
pending on the ratio of facilitation/inhibition of target-
processing in the RU and UR conditions: Strictly additive
effects correspond to equal magnitudes of priming effects
in the RR and RU + UR conditions, underadditive effects
correspond to priming in the RR condition that has a
smaller effect than that in the RU + UR conditions, and
overadditive effects correspond to priming in the RR con-
dition that has a larger effect than that in the RU + UR con-
ditions. In fact, all three of these patterns of results have
been reported in the literature (e.g., strictly additive: Chwilla
& Kolk, 2003; Lavigne & Vitu, 1997, Experiments 1 and 4;

Balota & Paul, 1996; underadditive: Angwin, Chenery,
Copland, Murdoch, & Silburn, 2005; Chenery, Copland,
McGrath, & Savage, 2004; and overadditive: Chwilla & Kolk,
2003, Experiment 2; Lavigne & Vitu, 1997, Experiments 2
and 3; see Deacon et al., 2004). As for the different types
of multiple priming effects, the apparent discrepancies in
how the magnitudes of these effects determine the pattern
of additivity then point to the importance of identifying vari-
ables that could change these effects.
In multiple priming studies as well as in single priming

studies, the magnitude of priming effects are considered
to result from a combination of rapid automatic activa-
tion and slower inhibition (Deacon, Uhm, Ritter, Hewitt,
& Dynowska, 1999; Neely, 1991; for a discussion, see Brunel
& Lavigne, 2009). These processes are reported as being
highly dependent on SOA—defined as the sum of prime
duration and ISI (or prime–target delay). SOA can be
assumed to roughly match the stages of automatic and
controlled processes in single priming (see Hutchison,
2003; Hutchison, Neely, & Johnson, 2001; Deacon et al.,
1999; Neely, 1991) and has been proposed to influence
multiple priming (see Kandhadai & Federmeier, 2007;
Lavigne & Vitu, 1997). The effects of SOA on multiple prim-
ing will therefore be tested in themeta-analysis of the exper-
imental data. Another variable widely reported to strongly
influence the time course and magnitude of single prim-
ing effects is the strength of the prime–target association
(Frishkoff, 2007; Hutchinson, Whitman, Abeare, & Raiter,
2003; Coney, 2002; Abernethy & Coney, 1993). In addition,
its effects interact with those of SOA. When targets are
strongly associated with the prime, single priming effects
arise at shorter SOAs and are of larger magnitude (for

Table 1. Parameters of the Model

p Number of selective populations 99

τ Time constant of rate dynamics 10 msec

JE Average excitatory synaptic strength 3

JS Strength of synaptic potentiation 3,65

J1 Intrapopulation efficacy JE + JS

a Association strength 0.00675–0.00825

Ja Synaptic efficacy between associated populations JE þ JS
aðp− pi þ 1Þ− 1

ð1−aÞðpi − 1Þþ p− pi

J0 Synaptic efficacy between nonassociated populations JE − JS
aðpi − 1Þþ 1

ð1−aÞðpi − 1Þþ p− pi

JI Inhibitory synaptic efficacy JE

vθ Threshold for RT 21 Hz

νs Spontaneous activity 5 Hz

Iext Nonselective external currents set for vS = 5 Hz

Isel Selective external currents 10–200 μA

Imax
A Maximum adaptation current 0–500 nA

τ A Time constant of passive recovery 200 msec

dt Variable integration time step 0–3 msec

1448 Journal of Cognitive Neuroscience Volume 23, Number 6



reviews, see Brunel & Lavigne, 2009; Chiarello, Liu, Shears,
Quan, & Kacinik, 2003). Given that a modeling approach
requires the definition of precise values of SOA and of as-
sociation strength for simulations, the combined effects of
these two variables will be investigated in the research pro-
posed here.

Neural Correlates of Priming

Electrophysiological experiments on behaving monkeys
provide information on neuronal activities during priming
protocols that are very similar to protocols used in experi-
ments conducted with humans involving a single prime
preceding a target (see Brunel & Lavigne, 2009). The
majority of protocols used in studies on monkeys involve
a delayed pair associate (DPA) task on a target that, after a
delay, follows a prime that can be associated or not with
the target depending on prior learning. To obtain a re-
ward, the monkeys are required to hold (or release) a
bar if the prime and the target are associated (e.g., Erickson
& Desimone, 1999; Rainer, Rao, & Miller, 1999). Another
type of task requires the monkeys to choose the item
associated with the prime among two targets presented
by touching it on the screen (e.g., Naya, Sakai, & Miyashita,
1996; Sakai & Miyashita, 1991). In both tasks, during the
delay period neurons specific to the prime exhibit “retro-
spective” activity—that is, increased spike rates compared
with spontaneous activity (for a discussion, see Brunel &
Lavigne, 2009). It is reported in inferior temporal (IT), peri-
rhinal, and prefrontal (PF) cortices and is believed to
underlie short-term or working memory of the prime
stimulus (Miyashita, 1988; Miyashita & Chang, 1988; Fuster
& Alexander, 1971). When additional items unrelated to
the prime and target were presented to the monkeys,
retrospective activity of PF neurons but not of IT neu-
rons was found to resist interference (Miller, Erickson, &
Desimone, 1996). Another type of neuronal activity is re-
ported between prime and target presentations: IT and
PF neurons specific to the associated target show “pro-
spective” activity—that is, increasing firing rate during the
delay period (Naya, Yoshida, & Miyashita, 2001, 2003;
Yoshida, Naya, & Miyashita, 2003; Fuster, 2001; Erickson
& Desimone, 1999; Rainer et al., 1999; Miller et al., 1996;
Sakai & Miyashita, 1991; Miyashita, 1988; Miyashita &
Chang, 1988). Prospective activity is believed to underlie
priming processes of activation of the target associated
with the prime before target presentation. Once generated
by the related prime, prospective activity of IT neurons car-
rying information about the associated target is reported
to resist processing of an unrelated item interposed be-
tween the associated prime and the target, which corre-
sponds to the RU condition of multiple priming (Takeda,
Naya, Fujimichi, Takeuchi, & Miyashita, 2005). Combined
recordings of electrophysiological and behavioral data
show that spike rates of neurons coding for a given re-
sponse correlate with the time required to give this re-
sponse (Roitman & Shadlen, 2002) and allow us to relate

prospective activity to the kinds of priming-like effects
found in monkeysʼ RTs (e.g., Erickson & Desimone, 1999).

Studies in monkeys provide us with very helpful data to
improve the biophysical realism of cerebral cortex models
by satisfying constraints on neuron properties and dy-
namics, network architecture, spike rates of neurons, and
behavioral response times. This allows us to elaborate in
further detail on computational models that aim to bridge
the gap between neuronal and behavioral effects of multi-
ple priming.

Models of Priming

The modeling approach provides us with mathematically
tractable descriptions of cognitive processes. It provides
descriptions of the correlational structure of experimen-
tally tested independent and dependent variables in terms
of causal relations governing the inner system. Current
connectionist models are based on network architectures
connecting elementary processing nodes. Most have fo-
cused on lag0 priming effects, when there is no word in-
terposed between the prime and the target. They have
been challenged by data on multiple priming, especially
regarding the lag1 RU condition where one unrelated
word is interposed between the related prime and target
(for a discussion, see Becker, Moscovitch, Behrmann, &
Joordens, 1997). Indeed, priming effects where the lag >
0 require that models take into account the possibility for
active interference, usually assumed to be based on inhibi-
tory processes. Localist models account for lag0 priming by
describing how activation from a node coding for the prime
is propagated to several nodes coding for related concepts
activated in parallel (Anderson, 1976, 1983a, 1983b; Collins
& Loftus, 1975; Collins & Quillian, 1969; see Ratcliff &
McKoon, 1988). They can account for lag1-RU priming with
variable levels of “resistance” to interference depending on
the time constant of passive deactivation, which can corre-
spond to active interference if set as being dependent on the
number of items activated. Distributed models encode
items as attractor states in which a single item can be fully
present (McRae & Ross, 2004; Randall, Moss, Rodd, Greer,
& Tyler, 2004; Cree, McRae, & McNorgan, 1999; Becker
et al., 1997; Bullinaria, 1995; Masson, 1995; Plaut, 1995;
Moss, Hare, Day, & Tyler, 1994; Sharkey & Sharkey, 1992).
They account for lag0 priming between a prime and a target
sharing units in the same state—activated or inactivated—
by the reduced time needed by the network to settle in
the attractor encoding the target, when units are already
in the corresponding state due to previous processing of
the prime. Regarding RU priming, the model of Masson
(1995) and Masson, Besner, and Humphreys (1991) shows
interference-based canceling of priming. Given that the
network can be on only one state at a time that corresponds
to the full encoding of one item only, the network shifts
from an attractor state encoding the prime 1 to a state en-
coding the prime 2. The change in the pattern of activated/
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inactivated units then induces a canceling of priming. Plautʼs
(1995) model shows that RU priming is possible using a
less stringent criterion for the degree to which the network
output must settle before it responds—that is, a greater tol-
erance of target recognition. This allows for the detection of
some units still in the state of encoding the target after pro-
cessing of the unrelated Prime 2. The determinants of RU
priming in terms of conceptual structure in memory or pro-
cedural parameters are still to be understood at the network
level. However, current connectionist models do not ac-
count for behavioral data on multiple priming in terms of
properties of cortical neurons and cortex architecture,
which make it difficult for them to capture physiological
mechanisms of information processing.

We propose here a comprehensive understanding of
the different types of multiple priming and of their variabil-
ity. This is achieved through computational modeling of
both behavioral data from studies in humans and electro-
physiological data from studies in monkeys. Under this per-
spective, models of cortical networks are mathematically
described according to neurophysiological data recorded
during behavioral tasks that require monkeys to process
sequences of items. These models allow us to account
for network behavior as a function of properties of differ-
ent types of neuron and of dynamics of different types of
receptors related to biophysically based neural network
models such as networks of integrate and fire neurons
(see Lavigne & Darmon, 2008; Mongillo, Amit, & Brunel,
2003; Brunel & Wang, 2001). In addition, the link to net-
work behavior respects the reported relationship between
electrophysiological and behavioral data—that is, the rela-
tionship between spike rates and RTs (Roitman & Shadlen,
2002; see Erickson & Desimone, 1999). Rate models per-
mit a mean field approach on the basis of a Wilson–Cowan
formalism which, although presenting a simplification of
the dynamics of neuron populations, can reproduce the
dynamics of networks of more realistic Hodgkin–Huxley
neurons (see Roxin, Brunel, & Hansel, 2005). Both types
of cerebral cortex models account for retrospective activ-
ity in working memory in monkeys (Amit, Bernacchia, &
Yakovlev, 2003; Brunel & Wang, 2001; Renart, Moreno,
de la Rocha, Parga, & Rolls, 2001; Amit & Brunel, 1997;
Amit, 1995). Recent models also account for the main-
tenance of sequences of items as a function of semantic as-
sociations in humans (Haarmann & Usher, 2001) and for
prospective activity (Lavigne, 2004; Mongillo et al., 2003;
Lavigne & Denis, 2001, 2002; Brunel, 1996), determining
a variety of semantic priming effects observed in humans
(Brunel & Lavigne, 2009; Lavigne & Darmon, 2008;
Brunel, 1996). These models are formal theories that at-
tempt to unify a large variety of behavioral and neurophys-
iological data. They link fundamental cognitive functions
such as working memory and semantic priming to the
behavior of large neuron populations and to neuron prop-
erties. Brunel (1996) proposed a realistic cortical network
model of priming on the basis of the inhibitory regula-
tion of activation between neural populations that encode

items. Results brought in evidence that cortical network
models are able to keep several items simultaneously acti-
vated, according to a capacity-limited view of WM (see
Cowan, 2001; for a review, see Haarmann & Usher, 2001).
Mongillo et al. (2003) propose a model that accounts for
retrospective activity of the neurons, maintained through
positive feedback between neurons coding for the stimu-
lus. Theirmodel also accounts for the amount of time taken
up by prospective activity of the associated neurons that
code for the expected target due to feedback from asso-
ciated neurons that are coding for the prime. Other models
describe how two converging sources of activation gen-
erate multiple priming (Lavigne, 2004; Lavigne & Denis,
2001). Recent computational models of cortical networks
have been proposed that account for a rich phenomenol-
ogy of lag0 priming in humans as a function of the SOA,
various types of semantic relations, values of association
strength, and levels of dopamine neuromodulation (Brunel
& Lavigne, 2009; Lavigne & Darmon, 2008). This makes
these models good candidates for a unified approach to
multiple priming in the cerebral cortex.

Spike Frequency Adaptation and
Sequence Processing

To account for simple associative priming, cortical net-
works models are required to activate one or two items
at a time—as in, the prime followed by the target or the
prime and the target together (Mongillo et al., 2003; see
also Deco & Rolls, 2005). In these models, the presen-
tation of an item generates a strong visual response that
cancels retrospective activity of the preceding items. This
effect makes these models unable to simultaneously hold
retrospective activity of a Prime 1 and prospective activity
of its associated target against an unrelated intervening
Prime 2 (lag1-RU condition). Accounting for lag priming
requires models to keep several items activated at a time
(several primes and the target) during a whole trial. A
capacity-limited working memory dealing with several
simultaneously activated items could theoretically ac-
count for the canceling of a given item activation when
maximum capacity is reached because of inhibitory feed-
back that determines proactive interference and, more
importantly, retroactive interference of previous items
(see Haarmann & Usher, 2001). Models with a working
memory capacity for several items can account for lag0
priming effects involving the simultaneous activation of
several items associated with the prime (Brunel & Lavigne,
2009; Lavigne & Darmon, 2008). They could prove to
be necessary and sufficient in accounting for RU priming
effects at lag1 compared with lag0 in terms of increasing
retroactive interference that cancels priming effects. How-
ever, they would have difficulties in accounting for var-
iations in RU priming as a function of SOA at fixed lag.
Accounting for the presence or absence of RU priming re-
quires models to simultaneously hold retrospective activity
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of the primes and prospective activity of the RU associate
not only as a function of the sequence of inputs but also as
a function of their precise timing. The time-dependent pro-
cessing of stimuli has been linked to the neural property of
spike frequency adaptation (SFA) regarding perceptual
phenomena of visual adaptation (Sanchez-Vives, Nowak,
& McCormick, 2000a, 2000b), repetition blindness (see
Morris, Still, & Caldwell-Harris, 2009), forward masking,
and selective attention (Wang, 1998). SFA is reported to
determine the level of activity of neurons as a function of
the order of presentation of the stimuli they code for. At
the phenomenological level, SFA is defined by a progres-
sive decrease in neuronal firing rate in response to re-
peated (Miller & Desimone, 1994; Miller, Li, & Desimone,
1993; Baylis & Rolls, 1987) or constant input (Puccini,
Sanchez-Vives, & Compte, 2006), which leads to time-
varying spike rates during retrospective activity of a neuron
population that is coding for an input (Markram& Tsodyks,
1996). Deco and Rolls (2005) have proposed SFA as a
determinant of noncontinuous spike rate dynamics—an
increase followed by a decrease of activity, determining
sequential priming of several items—one at a time in a
sequence—but with a single-item capacity in the working
memory that does not allow for combinations of items to
generate multiple priming.
SFA has been observed in many types of neurons and

in many species (see Puccini et al., 2006; Fuhrmann,
Markram, & Tsodyks, 2002), including human neocortical
cells (Lorenzon & Foehring, 1992; Foehring, Lorenzon,
Herron, & Wilson, 1991; Avoli & Olivier, 1989). At the
neurophysiological level, SFA diminishes the excitability
of a neuron because of increased afterhyperpolarization
(AHP). The action-potential–dependent hyperpolarized
potential Ii

A progressively builds-up with successive spikes
after current-induced repetitive firing (Schwindt, Spain,
Foehring, Chubb, & Crill, 1988; Madison & Nicoll, 1984)
and influences interspike intervals to produce SFA in slices
of human cortex (Avoli, Hwa, Lacaille, Olivier, & Villemure,
1994; Lorenzon & Foehring, 1992). The ionic mechanisms
underlying AHP have been suggested to be produced
by fast Ca2+-activated K+ currents (Schwindt et al., 1988;
Madison & Nicoll, 1984; Connors, Gutnick, & Prince,
1982; Hotson & Prince, 1980), slow-activating and nonin-
activating voltage-sensitive potassium current (M-current;
McCormick, Wang, & Huguenard, 1993; Madison & Nicoll,
1984), and slow Na+ inactivation (Schwindt & Crill, 1982;
Michaelis & Chaplain, 1975). Thus, most pyramidal neu-
rons in the neocortex exhibit SFA on various time scales
(Sanchez-Vives et al., 2000a; McCormick, Steinmetz, &
Thompson, 1985; see Puccini et al., 2006; Varela et al.,
1997). At the neuron level, the nonlinearity of SFA enhances
the sensitivity of single neurons to changes in stimuli in-
tensities (Puccini et al., 2006) and enables them to detect
new inputs while disregarding previous inputs, depending
on their respective intensities (Wang, 1998). At the network
level, the mechanism of SFA has been reported to enable a
wave of activation to propagate from a single input prime to

its associates one after the other, although only one item
can be activated at a time (Deco & Rolls, 2005). Given that
current cortical models of semantic priming do not embed
SFA, their ability to account for all conditions of multiple
priming and for their precise dynamics is still an open ques-
tion. The behavioral effects of SFA suggest that a network
of adaptive neurons can generate time-varying spike rates
of different neuron populations that are coding for succes-
sive inputs, enhancing the ability of neuron populations to
detect changes in input-switching by time-modulating their
spike rate. We propose here that during a protocol of multi-
ple semantic priming, SFA could generate nonlinear time-
variations of the retrospective activity levels of the primes
and of the related prospective activity level of the target.
This would lead to differential priming effects, depending
on the positions of successive primes in a sequence and
probably also depending on their respective processing
times defining prime–target SOAs.

Purpose of the Present Research

The purpose of this study is to provide a comprehensive
understanding of the current research on the determinants
of multiple semantic priming. It is therefore of importance
to identify if, to what extent, and how multiple priming
effects are additive, underadditive, or overadditive. The
meta-analytic approach is proposed to search for modera-
tor variables regarding the questions of “if” and “to what
extent.” A further goal of this study is to provide a unified
explanation of “how” the experimental conditions, proto-
cols, and neuron properties such as SFA determine the
behavior of a computational model of a cortical network.
This would provide us with a model accounting for an
extended range of semantic priming effects in the cerebral
cortex.

METHODS

Meta-analysis

The experimental approach provides us with essential in-
formation on the different types of multiple priming effects
across many studies. However, data from different studies
are gathered using various protocols, numbers of partici-
pants, and experimental materials, making hazardous the
global assessment of the effects reported. The meta-analytic
approach is a statistical method for investigating the magni-
tude of an effect on the basis of the combined results from
several independent studies (Glass, 1976) and seeks to ex-
plain inconsistencies in the results of separate studies by
examining the relationship between study outcomes and
characteristics of the individual studies (Durlack, 1995).
Comparison of priming effects from separate studies is
made possible through the use of effect sizes, which are
statistical standardized representations of the magnitude
of an effect, as a function of the amplitude of the effect
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reported in each study, weighted by the standard deviation
of the effect. The standardized effect sizes are then a com-
mon metric through which different studies may be com-
pared, making possible to address whether differences in
study characteristic or sampling errors are responsible for
variations in effect sizes across studies. During analysis, the
effect sizes become the dependent variable and study fea-
tures become the independent variables.

The first step in the meta-analytic procedure is to for-
mulate the research questions that will guide the study
(Wampler, Serovich, Sprenkle, & Moon, 1996; Durlack,
1995; Johnson, 1989) to define the literature search. They
rely on multiple priming in word sequence processing in-
volving at least an RU condition compared with a UU con-
dition. To capture most studies with relevant data, we
carried out a computer-based search of all studies pro-
viding data on multiple priming, using Web databases,
articles references lists, achieved by a keywords search
using various combinations of terms such as “semantic
priming,” “multiple primes,” “lag priming,” and “word
sequence.” The literature review allowed selecting pub-
lished articles that tested for lag priming effects and whose
experimental protocols met the following inclusion criteria
(see Riby, Perfect, & Stollery, 2004; Lucas, 1999; Rosenthal,
1995): (1) results provided behavioral data on processing
time of the target (RTs), (2) words lists involved semantic
relatedness and no syntactic relations, (3) one prime was
related and one prime was unrelated to the target (RU
condition), (4) no cues or task could bias processing of
the primes or prime–target relation (see Fuentes, Vivas, &
Humphreys, 1999), (5) a baseline condition was tested in-
volving unrelated primes (UU condition; see Neely, 1991,
for a discussion), (6) healthy participants were considered,
and (7) adequate data were provided to compute effect
sizes from either descriptive or inferential statistics.

The coding criteria were then set up to accurately cap-
ture information on the variables under study: lag, SOAs,
and ISIs between each prime and the target, condition of
multiple priming, number of subjects, experimental task,
and RTs in the RR, RU, UR, and UU conditions for effect
sizes calculation. Some parameters were not reported
or were present among too few studies to be analyzed
beyond simple counting. This was the case of the type of
semantic relation (association vs. feature overlap), the as-
sociation strength between the primes and target (strong
vs. weak), and the relation between the two primes (re-
lated vs. unrelated). We then investigated as main mod-
erator variables parameters the most likely involved in
modulating multiple priming: condition of multiple prim-
ing and SOA. A total of 239 effect sizes were then calcu-
lated for the different meta-analyses on the basis of data
of 63 experiments meeting the aforementioned criteria
and selected for consideration from 25 articles (labeled
by asterisks in the reference list).

The question of multiple semantic priming was assessed
following the meta-analytic strategies outlined by Hedges
and Olkin (1985). An effect size was calculated for each

condition of multiple priming, examined for each group
of participants. When some studies reported separate ef-
fects for different conditions (e.g., SOAs), the correspond-
ing d values were calculated on the basis of priming effects
for each experiment of each study, as the difference be-
tween the average RT in the UU baseline condition and
the related condition of interest (RR, RU, and UR). To
combine the results of the different studies, we converted
means and standard deviations from each experiment into
Hedgesʼ g. This standardized mean difference represents
the mean difference between the conditions of multiple
priming, divided by a pooled standard deviation, which
results in less variance and less bias than the use of the
control conditionʼs standard deviation (Hedges, 1981).
When no means or standard deviations were reported,
effects size estimates were calculated from statistics of the
data (Wolf, 1986). The g values were then converted to
d values to remove the small sample bias inherent in this
statistic (Hedges & Olkin, 1985). This provided a less vari-
able and less biased estimate of the population effect sizes
(Hedges, 1982) regarding the different conditions of multi-
ple priming.

Cortical Network Model

To investigate multiple priming effects, we constructed
an elaboration of the model of a local network of an
area of association cortex used by Brunel and Lavigne
(2009), in which neurons were spike frequency adaptive.
Populations of excitatory neurons code for concepts in
memory and exhibit simultaneous persistent activities
following presentation of the corresponding items. We
study a simplified “rate model” in which dynamical vari-
ables represent average firing rates of populations selec-
tive to the same concept. Parameters of the model are
presented in Table 1. We assume for simplicity nonover-
lapping populations of neurons coding for p distinct stim-
uli (Brunel & Lavigne, 2009; Brunel & Wang, 2001; Amit
& Brunel, 1997), shown schematically in Figure 1A.
We use a mean-field–type description of a firing-rate

model that includes multiple associated sets of neural
populations. Each population i = 1,…, p is described
by an average firing rate vi whose dynamics is described
by a standard Wilson–Cowan type equation:

τ
dvi
dt

¼ −vi þ Φ
1
p

Xp
j¼1

Jijvj − IAi þ Iseli þ Iext − Iinh

" #
ð1Þ

where τ represents the time constant of firing rate dy-
namics, Jij represents the total synaptic strength from
population j to population i, Ii

sel represents the selective
input to population i, Iext represents the global external
inputs to all populations, and Iinh represents a global in-
hibitory current regulating the activity of all populations,
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which is here for the sake of simplicity proportional to
the average activity of all populations:

Iinh ¼ JI
p

Xp
j¼1

vj ð2Þ

Strength of inhibition is described by JI. This description of
inhibition corresponds to a scenario in which inhibitory
neurons have linear f–I curves and an instantaneous time
constant. The external input in absence of stimuli is chosen
such that all populations in the network have some pre-
scribed level of background activity v0 = 5 Hz. J1, J0, and
JI are chosen so that both nonselective background state
and selective attractors corresponding to single or multi-
ple activated items are present in the network.
Here we use a mean field approach describing popula-

tion rates effective to account for a large set of single prim-
ing effects (Brunel & Lavigne, 2009). We embed in the
model the neuron property of SFA, described at the level
of neuron population i as a function of the mean firing rate
vi averaged over this population. The dynamics of the
mean AHP current Ii

A are described using the equation of
Fuhrmann et al. (2002) derived from the integrate-and-fire
model of an adapting neuron:

dIAi
dt

¼ −IAi =τ
A þ αIAmaxvi ð3Þ

The effects of SFA on the dynamics of the mean firing
rate vi of population i are described by applying the de-
layed negative feedback due to AHP Ii

A to population
i according to Equation 1. Imax

A approximates the relation
between maximal conductance for the adaptation cur-
rent and cell membrane conductance (with α = 0.02; see
Fuhrmann et al., 2002), and τ A. is the tau of passive recov-
ery (when vi = 0). The choice for parameters values was
guided by the results of Fuhrmann et al. (2002) and by ex-
perimental results showing that adaptation induces changes
in the response magnitude of neurons (Gutnisky & Dragoi,
2008; Sharpee et al., 2006; Felsen et al., 2002; Dragoi,
Sharma, & Sur, 2000) within a range of hundreds of milli-
seconds (Dragoi, Sharma, Miller, & Sur, 2002; Muller, Metha,
Krauskopf, & Lennie, 1999).

Finally, Φ describes the static current-to-rate transfer
function (or f–I curve, Equation 4, Figure 1B). As in Brunel
and Lavigne (2009), we take this function to be the trans-
fer function obtained analytically for quadratic integrate-
and-fire neurons in presence of strong background noise,
which is expected to be qualitatively and in some con-
dition quantitatively similar to the one of cortical excit-
atory neurons (Brunel & Latham, 2003). The function Φ
is given by

ΦðIÞ ¼ 1ffiffiffi
π

p
τm

∫∞−∞dzexp −Iz2− σ4z6=48
� �� �−1 ð4Þ

where σ = 0.5.

Figure 1. (A) Architecture of the excitatory–inhibitory network: Excitatory neurons are divided in p subpopulations of neurons selective for
distinct stimuli (for clarity, p = 3 in the schema: A, B, and C). Inhibitory neurons are nonselective. Synaptic strength is indicated by line
thickness and type (precise values of the parameters are given in Table 1). (B) I–f curve described by the transfer function Φ.
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Synaptic Matrix

We consider p = 99 items stored in memory, organized in
pg = 33 groups of pi = 3 semantically associated items
within a group ( p = pipg). The synaptic matrix can have
three different values, depending on the relationship be-
tween items encoded by the pre- and postsynaptic popula-
tions. The diagonal term (connections between neurons
coding for the same item) is J1. Connections between
populations coding for unrelated items have strength J0.
Finally, connections between populations coding for re-
lated items have strength Ja = J0 + a( J1 − J0), where
ameasures associative strength. For the sake of simplicity,
we present an example with J1 = 1 and J0 = 0. In the case
of a subset of the network with p = 9, pg = 3, and pi = 3,
the synaptic matrix has the following form:

Mi; j ¼

1 a a 0 0 0 0 0 0
a 1 0 0 0 0 0 0 0
a 0 1 0 0 0 0 0 0
0 0 0 1 a a 0 0 0
0 0 0 a 1 0 0 0 0
0 0 0 a 0 1 0 0 0
0 0 0 0 0 0 1 a a
0 0 0 0 0 0 a 1 0
0 0 0 0 0 0 a 0 1

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

ð5Þ

Hence, for simulations, a target item (e.g., 1) is associated
to two primes (e.g., 2 and 3), and each prime is related
to the target by a direct relation. It corresponds to a
step11 relation defined in Brunel and Lavigne (2009) that is
each prime is directly associated to the target, which is
their only associate. This allows analysis of conditions
of multiple priming corresponding to different sequences
of items: 2-3-1 for the RR condition, 2-5-1 for the RU con-
dition, 8-3-1 for the UR condition, and 5-8-1 for the UU
condition.

Protocol

Simulations emulated in the model used the same experi-
mental protocols as those used in humans studies (Fig-
ure 2B). The equations for the population spike rate vI and
AHP current Ii

A are integrated using an extension of the
Runge–Kutta fourth-order numerical integration method
with variable time step dt given by an estimation of the error
by a comparison to the Runge–Kutta third-order method.
During numerical simulations, a trial begins with the net-
work in a state of spontaneous activity (Figure 2A). At Prime1
onset, the corresponding neuron population reaches an
elevated activity (“visual response”). In response to a depo-
larizing current, the neuron population initially fires at a
high frequency that decreases according to SFA. The level
of activation decreases after prime offset but remains above
the level of spontaneous activity because of the strong ex-

citatory feedback through J1. Then Prime 1 exhibits time-
varying level of retrospective activity during Delay 1 due to
adaptation. This leads in turn to SFA-dependent prospec-
tive activation of the population of neurons coding for its
associate through Ja. At Prime 2 onset, the level of activity
of neurons coding for Prime 2 and its associate increases.
This triggers an increase in feedback inhibition proportional
to activation and then to SFA-dependent activation of
Prime 2. Hence, at the time of the presentation of the target
the corresponding neuronal population can exhibit variable
firing rate ranging from above (prospective activity) to under
(prospective inhibition) level of spontaneous activity. The
precise level of activity for a given association strength a de-
pends on the experimental condition (Figure 2A): RR (strong
prospective activity), UU (prospective inhibition), and RU
andUR (ranging from low prospective activity to prospective
inhibition).
On the basis of electrophysiological studies reporting cor-

relation between spike rates and response times (Roitman
& Shadlen, 2002), modeling approaches of cortical net-
works take as the RT the time at which the mean spike rates
of a population of neurons reaches a prescribed threshold
(Brunel & Lavigne, 2009; Lavigne & Darmon, 2008; Wong
& Wang, 2006; Wang, 2002), similar to classical diffusion
models of RT (Ratcliff, 1978; see Randall et al., 2004; Plaut
& Booth, 2000; Masson, 1995; Plaut, 1995; Masson et al.,
1991). In the mean field model, when a target is presented
to the network, its recognition time Tθ is the time elapsed
from target onset to the instant at which the mean firing
rate of the corresponding neurons population crosses a
threshold vθ for the first time.Tθdepends on the level of pro-
spective activity of the neurons population coding for the
target at target onset, itself assumed to depend on the syn-
aptic matrix and protocol. The four experimental condi-
tions led to specific recognition times TRR

θ , TRU
θ , TUR

θ , and
TUU
θ that enable to quantify themagnitudes ofmultiple prim-

ing effects of two Primes 1 and 2 either related or unrelated
to the target

PE12 ¼ T θ
UU − T θ

12 ð6Þ

and the resulting pattern of additivity:

ADD ¼ PERR− ðPERU þ PEURÞ
¼ TRU þ TUR− TRR− TUU ð7Þ

RESULTS

Types of Multiple Priming

We first investigate the relative magnitudes of the different
types of multiple priming through a meta-analysis of effect
sizes in the three conditions RR, RU, and UR. The meta-
analysis of data gives a good overview of the effects through
a test of heterogeneity of each condition (Hunter& Schmidt,
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1990), which indicates whether the variation in effect sizes
is significantly greater than expected by chance. The greater
the value of the Q statistic—which measures the hetero-
geneity of the sample of individual effect sizes constituting
the composite effect size—the greater the heterogeneity
in effects sizes distribution. It allows for a χ2 test of signifi-
cance of the null hypothesis that all of the effect sizes are
equal (Hedges & Olkin, 1985). In the case of a significant
value of the Q statistic showing heterogeneity of the dis-
tribution, the group can then be further subdivided and
the process repeated (Gurevitch, Morrow,Wallace, &Walsh,
1992).

Meta-analysis 1 (MA1, Sample1): Comparison of RR, RU,
and UR Priming Effects

Understanding the pattern of multiple priming effects re-
quires investigation of the relative magnitudes of priming
between the three conditions RR, RU, and UR. To make
comparisons as accurate as possible, we first compared
these conditions as within-study variables. Indeed, different
studies often vary greatly in their particular experimental

protocols (defined by primesʼ durations and interstimuli
intervals), the task given to subjects (lexical decision, nam-
ing, semantic matching), and the type of prime–target rela-
tion (direct association, feature overlap, mixed semantic
relations). Selecting studies testing each of the three con-
ditions as within-study variables provided us with a value
of effect size for each condition. This ensured that a par-
ticular protocol, task, or type of relation from any given
study was not overrepresented or underrepresented in
any condition.

In addition, retroactive interference (involved in the RU
condition) is reported to be stronger than proactive inter-
ference (involved in the UR condition) (Cowan, 2001; for a
review andmodel, see Haarmann &Usher, 2001). This sug-
gests that although the RU and UR conditions would both
involve facilitation of the target (from the related prime),
they would involve different types of retroactive versus
proactive interference, respectively. To clearly assess for
RU and UR priming effects, we therefore considered for
MA1 cases where primes were presented sequentially
and not cases where they were presented simultaneously.
We then included in this first meta-analysis 78 effect sizes

Figure 2. (A) Spike rates of
six neurons populations (for
clarity, the 94 other excitatory
populations and inhibitory
population are not displayed)
as a function of time defined
in protocol B and Equation 5
(a = 6.75 × 10−3, I sel = 50 μA,
and Imax

A = 420 nA). Prime 1
(black dashed curve) and
Prime 2 (black dotted curve)
successively exhibit visual
response during prime
presentation, followed by
retrospective activity above
spontaneous activity (vs =
5 Hz; horizontal black
dash-dotted line). Targets in
the RR (green solid curve),
RU (red solid curve), UR (blue
solid curve), and UU (brown
solid curve) conditions exhibit
prospective activity at variable
level before target presentation.
Vertical dotted lines indicate
response times T θ from target
onset for target population
activity to reach threshold vθ =
21 Hz (horizontal solid line).
Horizontal color bars indicate
the magnitude of RR, RU, and
UR priming effects, calculated
as the difference between
RTs in the unrelated (TU

θ) and
related conditions (TRR

θ , TRU
θ ,

and TUR
θ , respectively; Equation 6). (B) Example of a particular experimental protocol starting with neuron populations at spontaneous activity for

50 msec, preceding Prime 1 presented for duration tP1 (here 200 msec) followed by delay period td1 with no selective input (interstimuli interval,
ISI) defining variable SOA (SOA1 = tP1 + td1), then the Prime 2 was presented for duration tP2 (here 200 msec) followed by delay period td2 with
no selective input (SOA2 = tP2 + td2; here td1 = td2 = 150 msec); finally, the target was presented for 200 msec followed by 50 msec with no
selective input before the end of trial.
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from 26 studies, all using protocols of sequential presen-
tation of the primes and target and all reporting an effect
for each of three conditions RR, RU, and UR (Sample 1).
The distribution of effect sizes was partitioned into three
subgroups corresponding to the three multiple priming
conditions. This allowed for calculation of the two-way
between-group homogeneity QB that measures the varia-
tion in effect sizes between the three groups, which is ex-
plained by the moderator variable (Gurevitch & Hedges,
1993; Johnson, 1989) (i.e., the condition of multiple prim-
ing). The significant between-group QB value, QB(2) =
10.97, p < .01, indicates that there is a main effect of the
type of priming studied as amoderator variable on themag-
nitude of effect sizes—that is, effect sizes significantly differ
between RR, RU, and UR conditions. The within-group
homogeneity QW measures the residual error variance that
is not explained by the moderator variable (condition of
priming). The nonsignificant QW value, QW(75) = 8.4, p =
.99, does not indicate global within-group heterogeneity
when the three groups are considered together. The total
fit statistic QT = QB + QW measures if the mean weighted
effect size is a representation of the distribution of effect
sizes among studies. The nonsignificant QT value, QT(77) =
19.4, p=1, does not indicate that the global distribution of
the three conditions was heterogeneous—that is, varia-
tion in the whole sample of RR, RU, and UR priming effect
sizes is not greater than would be expected by chance
alone (Durlack, 1995). This suggests that the heterogene-
ity between RR, RU, and UR conditions revealed by the sig-
nificant two-wayQB value does not correspond to pairwise
differences between all three subgroups but only between
some of the subgroups. To further differentiate between
the three conditions of priming, we therefore tested the
pairwise heterogeneity betweenpairs of priming conditions
by calculating QB values for each one-way comparison. Re-
sults show significant main differences between RR priming
(d0RR = 0.51) and RU priming (d0RU = 0.26), QB-RR-RU(1) =
10.3, p < .01, and between RR priming and UR priming
(d0UR=0.33),QB-RR-UR(1)=5.3, p< .05. The nonsignificant
QT values, QT-RR-RU(51) = 24.9, p= .99 and QT-RR-UR(51) =
4.8, p= 1, andQW values,QW-RR-RU(50) = 14.5, p= .99 and
QW-RR-UR(50) = 0.5, p = .99, do not indicate that the
distributions of pairs of effects are heterogeneous. In addi-
tion, results do not show a significant difference between
RU and UR priming: QT-RU-UR(51) = 3.7, p = 1; QW-RU-UR

(50) = 2.8, p = .99; and QB-RU-UR(1) = 0.8, p = .37. MA1
then shows the following pattern of effects: RR > RU; RR>
UR; RU ≃ UR (wherein the symbol “≃” indicates a nonsigni-
ficant difference between the effects).

Modeling of Results from MA1 (MOD1, Same
Protocols as Sample1): Comparison of RR, RU,
and UR Priming Effects

Turning to the modeling account of the different types of
multiple priming effects, different response latencies to
the target stimulus are possible in the different conditions

(RR, RU, UR, and UU), allowing us to systematically study
the different types of multiple priming effects (RR, RU, and
UR) (Figure 2). Regarding the relations between the primes
and the target defined in Equation 5, the value of associa-
tion strength is defined to permit each of the three types
of priming effects to arise. The level of association strength
could not be estimated from the experimental data be-
cause its value was not sufficiently reported and was not ma-
nipulated. Association strength can be seen as an unknown
“free” parameter in most experimental studies, and its ma-
nipulation as a free parameter in the model could optimize
the consistency of its results with those of experiments for
each protocol. However, to clearly understand the effects
of other variables that are explicitly given from experimental
studies (e.g., SOA) and to later analyze the global effects of
association strength (MODa-SOA and Figure 5), we did not
consider it as a free parameter in the model. The first model
simulations (MOD1–MOD7) do not then investigate the
interstudy variability in association strength, and the cor-
responding simulations used a fixed value (a = 7.50 ×
10−3). Once multiple priming effects are better understood
for fixed values of association strength, we will propose a
description of its interactive effects with SOA on the differ-
ent types of multiple priming conditions (MODa-SOA).
To compare results from the model and from MA1, we

made simulations in MOD1 using the same values of primes
durations and interstimuli intervals as in the experimental
protocols and the same conditions (RR, RU, UR, and UU)
as those used for each of the 26 studies. This allowed
for the calculation of effects in the 78 conditions (26 RR,
26 RU, and 26 UR) corresponding to the experimental pro-
tocols of the Sample 1 used for MA1. A first qualitative re-
sult is presented in Figure 2, corresponding to a particular
protocol taken as an example that shows the activity of the
target in the conditions of multiple priming (RR, RU, UR,
and UU) and the relative magnitudes of the three types of
multiple priming effects. The difference in magnitudes go
in the same direction as the average values calculated over
the 78 conditions tested in the model and also in the same
direction as the average values calculated in MA1 (RR > RU;
RR > UR; and RU ≃ UR; the discussion of the precise mag-
nitudes determining the pattern of additivity will be pre-
sented in Figure 5 in relation to the interactions between
SOA and association strength). The cortical network model
exhibits the three types of multiple priming effects as fol-
lows: When a sequence of two primes is presented to the
network (Figure 2B), spike rates diagrams (Figure 2A) show
that each prime elicits retrospective activity of the popula-
tion coding for itself as well as prospective activity of its
associate. It corresponds to the coexistence of retrospec-
tive and prospective activities of several items in the net-
work working memory (Brunel & Lavigne, 2009; Lavigne,
2004; Amit et al., 2003; Haarmann & Usher, 2001; Brunel,
1996). Such ability for simultaneous activation of items al-
lows the network to simultaneously activate both primes
and their associates at various levels at target onset. Activity
of the neuron population coding for the target can then
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reach the threshold for recognition at variable times after
target onset, leading to variable RTs and priming effects.
To provide us with a quantitative account of the fit of

results from MA1 by the model, we compared averaged
effects from the 78 simulations. MA1 showed that RR prim-
ing was greater than RU and greater than UR priming, RU
and UR priming being not significantly different. The t tests
between the three groups of 26 effects obtained from simu-
lations show that RR priming (55 msec) is larger than RU
priming (24 msec; p < .01) and larger than UR priming
(17msec; p<.01) and that RU andURprimingdiffermargin-
ally from each other ( p = .065) (RR > RU; RR > UR; and
RU ≃ UR). This indicates the effects in the experimental
studies that the model captures the overall pattern of.

Meta-analysis 2 (MA2, Subgroup LDT of Sample1):
Comparison of RR, RU, and UR Priming Effects in
the Lexical Decision Task

MA1 included studies using different experimental tasks:
lexical decision task (LDT; 18 experiments), naming task
(NT; 6 experiments), and semantic matching task (SMT;
2 experiments). The different tasks used led to different
mean response times and to different magnitudes of prim-
ing effects, smaller effects in the NT than that in the LDT,
and larger effects in the SMT than that in the LDT (for a
review and discussion, see Neely, 1991). In the multiple
priming studies analyzed here, the three types of tasks
resulted in the same patterns of multiple priming but with
different magnitudes of averaged effect sizes that were
smaller in the NT than that in the LDT and larger in the
SMT than that in the LDT (d0NTRR = 0.27, d0LDTRR =
0.54, d0SMTRR = 0.95; d0NTRU = 0.13, d0LDTRU = 0.27,
d0SMTRU = 0.62, d0NTUR = 0.15, d0LDTUR = 0.37m and
d0SMTUR = 0.55). Given that there were a large enough
number of studies using the lexical decision task (18 stud-
ies each testing all of the three conditions of multiple
priming), it was possible to make a meta-analysis of the
subgroup of 54 effects sizes from these 18 studies. Results
show significant between-group QB values, QB-RR-RU(1) =
8.8, p < .01 and QB-RR-UR(1) = 5.8, p < .05, respectively,
which indicate main differences between RR and RU and
between RR and UR priming. The nonsignificant QW val-
ues, QW-RR-RU(34) = 5.8, p = .99 and QW-RR-UR(34) =
7.32, p = .99, and the QT value, QT-RR-RU(35) = 14.6, p =
.99 and QT-RR-UR(35) = 4.1, p = .99, fail to indicate that
the distributions are heterogeneous. When comparing
RU andUR priming effects, results do not show a significant
difference between these effects: QT-RU-UR(51) = 6.5, p =
1; QW-RU-UR(50) = 5.1, p = 1; and QB-RU-UR(1) = 1.4, p =
.24. MA2 then replicate the pattern of effects obtained from
MA1: RR > RU; RR > UR; RU ≃ UR. This enables us to rule
out the possibility that the NT and SMT could modify the
pattern of results obtained with LDT but leaves open the
question regarding the pattern of multiple priming effects
from studies using the NT and SMT.

Modeling of Results from MA2 (MOD2, Same Protocols
as Subgroup LDT of Sample1): Comparison of RR, RU,
and UR Priming Effects in the Lexical Decision Task

To compare results from the model and from MA2, we
compared averaged effects from the subgroup of simula-
tions corresponding to studies using the LDT with the
results of MA2 (same protocols as in the subgroup LDT
of Sample 1; fixed value of a = 7.50 × 10−3 same as
MOD1). The t tests between the three effects of multiple
priming obtained from simulations using the protocols of
LDT studies show that RR priming effects (54 msec) are
larger than RU priming (22 msec; p < .01) and larger than
UR (15 msec; p < .01) priming and that RU and UR prim-
ing effects do not differ from each other ( p = .17) (RR >
RU; RR > UR; RU ≃ UR).

The model accounts for results of MA2 involving only
data from studies using the lexical decision task. Further
data on multiple priming effects in other tasks (naming
task, semantic matching task, etc.) would be necessary to
investigate the task dependency of the effects and to
further elaborate the model regarding task specificities—
such as average RTs and effect sizes.

Modeling of the Effect of Interprimes Relatedness
(Protocols and Variable ISIs of Balota and Paul, 1996)

The model proposed here exhibits a pattern of effects in
the RR, RU, andUR conditions that is very similar to the pat-
tern of results from MA1 and MA2. These results are from
conditions of multiple priming where the two primes are
unrelated to each other. Balota and Paul (1996) explicitly
compared cases where the primes were either unrelated
or related by manipulating the interprime relatedness with-
in the same study: Experiment 1 involved related primes
that were coexemplar of a same category target (“copper”
and “bronze” for “metal”), and Experiment 2 involved un-
related primes that had the target as a common associate
(“lion” and “stripes” for “tiger”). Their results, although
not testable in the meta-analysis, do not show effects of
interprime relatedness: For related primes (Experiment 1)
compared with unrelated primes (Experiment 2), RR prim-
ing is 10 msec smaller, UR priming is 3 msec smaller, and
RU priming is 2 msec larger. We then tested the model in
these two conditions using the same protocol (presenta-
tion durations and delays) as in Balota and Paulʼs study
and for four values of interprime association strength (0,
6.75 × 10−3, 7.50 × 10−3, and 8.25 × 10−3; fixed value of
a = 7.50 × 10−3 between the primes and target, same as
MOD1, MOD2, andMOD3). To this, we usedmatrices from
Brunel and Lavigne (2009) that permitted to test priming
of a target (Population 1) in groups of three populations,
when the two primes (Populations 2 and 3) were related
(M4) or unrelated (M5) together. Results show that the
magnitude of multiple priming effects varies marginally
as a function of interprime relatedness for each of the RR
(2-msec variation), RU (1-msec variation), and UR (1-msec
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variation) conditions. We further tested if longer IS11 and
ISI2 could influence the pattern of multiple priming by per-
mitting stronger interprime priming (varying ISIs from 0 to
300 msec, corresponding to SOAs from 133 to 433 msec).
Again the interprime relatedness did not influence the mag-
nitudes of RR, RU, and UR priming effects (with a maximum
of 6-msec variation in the RR condition at 300-msec ISIs).
This result relies on several mechanisms. In the RR condi-
tion, the interprime relation permits each prime to receive
activation from the other in addition to from other sources
of activation (external currents and their associates if ac-
tivated). However, this increased activation leads to an
increase in feedback inhibition that reduces overall activ-
ity, including the one of the associated target. The target is
then at the same time activated (directly) and inhibited (in-
directly) by the preceding primes. Within the range of asso-
ciation strengths and SOAs tested, the two effects almost
compensate for each other, with a maximum effect of in-
terprime association being a 6-msec increase in the magni-
tude of RR priming. Then, although activation of the target
by the second related prime increases when it is related
to the first prime, its effect is compensated by an overall in-
crease of inhibition.

Meta-analysis 3 (MA3, Sample 1): Pattern of Additivity
of Multiple Priming

We then meta-analyzed the precise pattern of additivity
from studies using sequential presentation of items and
providing values of SOAs that were either explicitly re-
ported or calculable from word presentation durations,
ISIs, and subjects RTs. We then included in the analysis
all 26 studies reporting an effect for each of the three se-
quential RR, RU, and UR conditions (the same 78 effect
sizes as for MA1). Effect sizes in the three conditions of
multiple priming allowedus to calculate 26 effect sizes corre-
sponding to the RU + UR priming effects to be compared
with the 26 effect sizes in the RR condition (two groups of
effects). Results from the overall meta-analysis do not show
between-group differences, QB(1) = 0.1, p = .75, with the
RR condition (d0RR = 0.51) not being significantly different
from the sum of priming effects in the RU and UR condition
(d0RU + UR = 0.59) (RR≃ (RU+UR)). This does not rule out
the additivity hypothesis of priming effects (Balota & Paul,
1996). However, the overall heterogeneity, QT(51) = 68.8,
p < .05, and the within-group heterogeneity, QW(50) =
68.6, p < .05, are associated with a heterogeneous distribu-
tion of the RU+UR condition,QT,RU + UR(25)= 63, p< .01,
suggesting that variability in themagnitudeof RU+URprim-
ing could generate variability in the pattern of additivity.

Modeling of Results from MA3 (MOD3, Same Protocols
as Sample 1): Pattern of Additivity of Multiple Priming

To compare results on additivity from the model and from
MA1, we used simulation data of the 26 RR effects and cal-

culated the 26 sums of RU+UR effects from the 52 RU and
UR simulation data (these data came from the modeling
of results from MA1; simulations used the same protocols
and conditions of multiple priming as those of data from
Sample 1 used for MA1 and MA2). Regarding prime–target
association strength, precise values were seldom given
in experimental protocols and were not manipulated, so
a fixed value of association strength identical to the one
used for MOD1–MOD3 was set for simulations (a = 7.50 ×
10−3). MA3 does not rule out the possibility of additive ef-
fects. However, model simulations using fixed association
strength indicate 14 msec of overadditivity, with t tests be-
tween the two groups of 26 RR effects and 26 RU + UR
effects, indicating that RR priming (55 msec) is larger than
RU + UR (41 msec) ( p < .05). Although the model exhib-
its relative magnitudes of RR, UR, and RU priming going
in the same direction as those shown by MA1–MA2, the
overall pattern of overadditivity corresponds to an under-
estimation of UR and/or RU priming and/or an overestima-
tion of RR priming. This is to be related to the heterogeneity
of the RU + UR condition indicated by the MA3. This het-
erogeneity points to the effect of moderator variables that
modulate the precise magnitudes of some conditions of
multiple priming and of the resulting patterns of additivity.
Values of SOA (primes durations and ISIs) were given or cal-
culable from the experimental protocols of studies so that
simulations could be run using these exact values. However,
we note here that the values of association strength were
seldomly provided and probably varied from experiment
to experiment—that is, from SOA to SOA, which varied be-
tween experiments. In addition, association strength often
varied within a given experiment between the conditions
of RU and UR priming (i.e., between the target and the first
and second prime, respectively). As a consequence of these
two sources of variability in association strength (between
SOA and between conditions of multiple priming), the dif-
ferent protocols and conditions tested in the meta-analysis
most likely corresponded to different values of association
strength. These effects of association strength are of impor-
tance in that they are known to influence the magnitude of
single lag0 priming and also known to interact with those of
SOA. In the case of sequential processing of items such as
those involved in multiple priming, the effects of proactive
and retroactive interference in the UR and RU conditions
also depend on association strength (seeHaarmann&Usher,
2001, Figure 5). Then the use of fixed values of association
strength in the model in MOD1–MOD3 could have led
to underestimation or overestimation of the precise mag-
nitude of RU and UR effects. Therefore, not only do the
effects of SOA need to be better understood from the ex-
perimental data, but the effects of association strength
and their interactions with SOA need to be clarified as well
in the model by combining these two variables. After the
analysis andmodeling of the different types ofmultiple prim-
ing, it is then important to analyze and model the effects
of determinants of the magnitudes of multiple priming
effects.
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Determinants of Multiple Priming

Variables of importance that come to mind with regard to
the determinants of priming effects include the prime–
target delay (SOA) and the association strength (a) (for a
review and model of single priming, see Brunel & Lavigne,
2009). In addition, SFA defined at the neuron level is re-
ported as being central to the question of time-dependent
processing of stimuli (see Morris et al., 2009; Wang, 1998).
This neuron property can then interact with interstimuli de-
lays and possibly with association strength. A first step to-
ward analyzing the effects of SOA and association strength
therefore requires a better understanding of their interac-
tions with SFA to modify the levels of processing of the two
successive primes. These effects should be visible on the
relative magnitudes of priming from the first and from
the second prime, that is, of RU and UR priming effects.
In the absence of SFA, Brunel and Lavigneʼs (2009)

model accounts for a variety of single lag0 priming effects
in terms of varying levels of target activation. The priming
effects depend on the balance between activation received
from the associated prime—and from items associated to
both the prime and the target—and depends as well on
overall feedback inhibition. The lag0 condition is similar to
the UR condition, with additional prospective interference
generated by the unrelated prime preceding the related
prime and the target. In most studies on lag0 priming, a
response is required on the target and not on the prime
letter string, but the target of the preceding trial could
generate proactive interference. For example, a few stud-
ies onmultiple priming require subjects tomake a response
on each word in the sequence (McNamara, 1992a). In this
case where each word is a trial from the point of view of
the participant, the unrelated trial preceding a related
prime (2) corresponds to the unrelated Prime 1 and is as-
sumed to generate proactive interference. However, in
studies on lag0 priming, a warning signal is presented be-
fore the prime. This warning signal does not activate a
particular item in memory. It corresponds to a nonselec-
tive input that has been shown in a cortical network model
to generate a peak of global feedback inhibition that “re-
sets” the network by canceling retrospective activities of
previous items (Brunel & Wang, 2001). In fact, a warning
signal is used in studies on lag0 priming to “reset” the
system and prevent from intertrial interferences. Such a
“resetting” effect of the warning signal would therefore
predict UR priming effects to be weaker than lag0 prim-
ing effects. On this basis, we analyze the effects of SFA on
multiple priming using classical protocols of sequential
presentation of two primes and a target (see legend of
Figure 3).

Modeling of the Effects of SFA on Multiple Sequential
Priming (MODSFA)

The current model reports lag0-UR priming for the non-
adaptive case (Imax

A = 0), although prospective activity

of the related target is weaker than that in Brunel and
Lavigneʼs (2009) model. This is to be related to the
absence of “reset” of the network before presentation
of the related Prime 2 in protocols of multiple priming,
which permits proactive interference generated by the
first unrelated prime (Haarmann & Usher, 2001). Indeed,
feedback inhibition is weaker at the first prime onset than
at the second prime onset. As a result, although both pop-
ulations coding for the primes exhibit retrospective activ-
ity, priming from the second prime (UR) is weaker than
priming from the first prime (RU), for the three values of
a (Figure 3A) and SOA (Figure 3B) tested.

Considering the effects of SFA in the adaptive model,
Figure 3A shows that although prospective activity of the
UR target is stable across SOAs, association strength, and
SFA, prospective activity of the RU target is more variable,
being stronger for high values of association strength a
and low values of Imax

A . This is in accordance with the het-
erogeneity of RU priming shown by MA4. What results is a
time-dependent cross between a previously activated RU
associate and the last activated UR associate, which in-
creases with Imax

A . Figure 3B shows that the magnitude
of the shift between prospective activities of associates
to the first and/or second prime increases with SOAs and
with Imax

A . With very short SOAs, both RU and UR targets
are weakly activated and show limited effects of SFA. With
increasing SOAs, the effect of SFA becomes larger and
switches the ratio of prospective activities of an RU associ-
ate on a UR associate. Then SFA can account for the larger
variability in RU than that in UR priming by making RU
priming more sensitive to the effects of SOA and asso-
ciation strength. SFA is then an important factor interacting
with a and with SOA to improve the neural networkʼs abil-
ity to switch from prospective activity of associates to pre-
viously processed inputs (Prime 1) to prospective activity
of associates to new inputs (Prime 2).

Meta-analysis 4 (MA4, Sample 2 of All Effects Sizes on
lag1-RU Effects, Including Subgroup of lag1-RU Effects
from Sample 1): Effects of SOA on lag1-RU Priming

The analysis of the effects of SFA on multiple priming puts
forward that in an adaptive network the magnitude of RU
priming can greatly vary with SOA. It is to be related with
the fact that RU priming is the less reliably reported effect
of multiple priming in the literature. Given the sufficiently
larger number of data on RU priming available in the lit-
erature, we will then focus on the meta-analysis of SOAs
as moderator variables of RU priming, although not over-
looking the RR and the UR conditions in the modeling
approach. Considering RU priming when the words are
processed sequentially permits us to clearly distinguish
between SOA1—between Prime 1 and Prime 2 onsets—
and SOA2—between Prime 2 and target onsets. The ef-
fects of SOAs have been extensively studied in research
on single lag0 semantic priming, and SOAs have also been
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manipulated in multiple priming studies (see Chenery
et al., 2004; Balota & Paul, 1996). However, only one study
by Lavigne and Vitu (1997) cross-manipulated SOA1 and
SOA2 in a multiple sequential priming procedure. This
allowed to investigate the respective time courses of facilita-
tion by the related Prime 1 and of retroactive interference by
the unrelated Prime 2. Lavigne and Vituʼs results show that
RR and UR priming effects do not depend on SOAs, but
with regard to RU priming at short SOA1, SOA2 is a relevant

parameter that accounts for apparently contradictory data in
the literature: RU effects decrease with increasing SOA2,
switching the pattern of multiple priming from being addi-
tive to being overadditive.
Generally, studies report priming effects in the RU

condition for a variety of SOAs (e.g., Chenery et al., 2004;
Balota & Paul, 1996). However, SOA1 and SOA2 are neither
distinguished nor cross manipulated in these studies. Yet
they can involve different priming processes that interact

Figure 3. (A) Prospective
activities (Hz) at target onset
of populations coding for
items associated to the first
(RU, black curves) or second
(UR, gray curves) prime as a
function of Imax

A describing the
strength of SFA every 1 nA.
Results are displayed for three
values of association strength
a (6.75 × 10−3, dashed curves;
7.50 × 10−3, solid curves; and
8.25 × 10−3, dotted curves)
between the target and its
associated prime and for SOA1=
SOA2 = 450 msec (Isel = 50 μA).
The level of spontaneous
activity (vs = 5 Hz; horizontal
dash-dotted line) is displayed
for reference. (B) Ratio of
prospective activities of
populations coding for items
associated to the second (UR)
over the first (RU) prime, rv =
vUR /vRU, indicating the shift
from RU to UR priming as a
function of Imax

A , for three values
of SOA1 = SOA2 (250 msec,
solid curve; 450 msec, dashed
curve; and 650 msec, dotted
curve; td1 = td2 = 150 msec)
(Isel = 50 μA and a = 7.5 ×
10−3). The line of equal effects
is displayed for reference
(rv = 1; dash-dotted line).
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with variable levels of proactive and retroactive interfer-
ences generated by the first and second prime. To assess
for the combined effects of SOA1 and SOA2 on sequential
lag1-RU priming, we selected for the meta-analysis the set
of all 53 effect sizes corresponding to sequential lag1-RU
priming. These studies used sequential presentation of
items and provided values of SOAs that were either ex-
plicitly reported or that were calculable from word pre-
sentation durations, ISIs, and subject RTs. The set of all
sequential lag1-RU effect sizes (Sample 2) was partitioned
into two subsets according to the hypothesis that RU prim-
ing effects could be canceled under the double condition
that (i) the targetʼs activation by a related Prime 1 varies
between short SOA1 (sSOA1) and long SOA1 (lSOA1),
and (ii) it can be inhibited by an unrelated Prime 2 at long
SOA2 (lSOA2) comparedwith short SOA2 (sSOA2).We then
partitioned the distribution of lag1-RU priming effect sizes
into two subgroups, defined as (1) short SOA1 and long
SOA2 (RUs/ l) versus (2) short SOA1 and short SOA2 or
long SOA1 (RUs/1-l/s-l/1). (To fit the actual SOAs reported in
the experiments, we set short SOA1 ≤ 500 msec and long
SOA2 ≥ 450 msec.)
We then calculated the fit statistic QT for the distribu-

tion of lag1-RU effects to measure if its mean weighted
effect size d0 was a good representation of the distribution
of effect sizes among studies. The significant fit statistic,
QT,RU-SOA(52) = 95.9, p < .01, indicates a heterogeneous
distribution of sequential lag1-RU priming effects. Between-
group heterogeneity, QB,RU-SOA(1) = 6.33, p < .05, shows
that RU priming is significantly weaker in the “short SOA1–
long SOA2” condition (d0 = 0.13) than that in other con-
ditions of SOAs (d0 = 0.38). Regarding the dependence
of priming effects on SOA, it is assumed that postlexical
processing of the prime–target pair occurs after the tar-
get is processed and is less sensitive to the pretarget SOA
(see Neely, 1991). In the case of multiple priming, three
experiments did not present subjects with the RR or UR
condition (Lavigne & Vitu, 1997, Experiment 5; Joordens
& Besner, 1992, Experiments 2 and 3). Lavigne and Vitu
(1997) showed that when the Prime 2 was never related
to the target in the experiment, RU priming was reliable
independently of the SOAs. In this case, subjects could
have more easily used strategies of processing the Prime 1–
target relation and left aside the Prime 2 that was never
related, minimizing the effect of retroactive interference
and SOAs. When calculated on the remaining 50 effect
sizes, the significant fit statistic, QT,RU-SOA(49) = 72, p <
.05, and between-group heterogeneity, QB,RU-SOA(1) =
11, p < .01, confirms the sensitivity of lag1-RU priming
effects on the combination of SOA1 and SOA2. In addition,
MA4 reveals a significant within-group heterogeneity, QW,

RU-SOA(51) = 89.6, p < .01, associated with significant het-
erogeneities of each subset, QRUs-l(39) = 56.8, p < .05
and QRUs-s/ l-s/ l-l(12) = 32.7, p < .01. This suggests that
although SOAs account for some of the variability in RU
priming, SOAs alone do not account for all of the variability
in RU priming.

Modeling of Results from MA4 (MOD4, Same Protocols
as Sample 2): Effects of SOA on lag1-RU Priming

We investigated the behavior of the model regarding the
exact values of tP and td defining SOAs in experimental pro-
tocols. As for the preceding simulations of results (MOD1–
MOD4) and because association strength was not known
in the sample used for the meta-analysis, MOD4 simula-
tions were again carried out using the same fixed value
(a = 7.50 × 10−3) as in the preceding simulations (see
MODa-SOA and Figure 5B2).

Data from simulation of lag1-RU priming show that the
effect is correlated with the combination of SOAs used in
the meta-analysis (Figure 4C and D; see also Figure 5B2).
Data from simulation are coherent with experimental data
in the long SOA2 range, wherein they both show a de-
crease of lag1-RU priming with increasing SOA2. However,
the two sets of data show discrepancies in the short SOA2
range, wherein simulation data show increasing RU prim-
ing with increasing SOA1, whereas experimental data
reveal no significant relationships. This suggests that the
combination of SOAs alone does not account for all the
variability in lag1-RU priming and points to the possible in-
volvement of association strength in interaction with SOA.
Observing that only two experiments yielded data for SOA1
greater than 1000 msec, and assuming that a parameter
such as association strength varied from experiment to
experiment, this made it possible for a difference to exist
between mean values calculated over two studies at long
SOA1 and over 48 studies at short SOA1, whereas this value
was fixed in the simulations of MOD4. Thus, the model
either faces an intrinsic limitation or predicts effects of as-
sociation strength that are to be confirmed by further ex-
periments. More experimental data are needed on this
point, which led us to carry out additional experiments
cross-varying SOA1 and SOA2 with fixed values of associa-
tion strength (Dumercy, Darmon, Lavigne, & Vitu, in prep-
aration). Results show that in the short SOA2 range of
interest here, lag1-RU priming effects are stronger at long
SOA1 than at short SOA1. This tends to confirm predictions
of the model, although more experiments are needed that
manipulate association strength to improve the reliability
of the meta-analysis results.

Modeling of the Combined Effects of Association Strength
and SOAs on Multiple Priming (MODa-SOA)

The heterogeneities of each subset of RU priming defined
by SOAs means that although the combination of SOA1
and SOA2 accounts for a part of the variability in lag1-RU
priming, an additional moderator variable still influences
the magnitude of the effect. This challenges us to explore
the synergistic effects of SOA and association strength
on the pattern ofmultiple priming. However, ameta-analytic
approach of the effects of association strength in multiple
priming was prevented by two factors: (1) there were too
few studies reporting precise values of the association
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strength between each prime and target, and (2) this vari-
able was not manipulated in multiple priming studies. At
this point of the meta-analytical approach where groups
cannot be partitioned any more, the modeling approach al-
lows us to extrapolate testable predictions of the effects of
association strength on multiple priming (Figure 5).

We first investigated all of RR, RU, and UR priming ef-
fects and the resulting pattern of additivity of priming
within a wide range of the values of SOA1 and SOA2 re-
ported in experimental data (150–650 msec). Simulations
were carried out using the value of association strength
used in MOD1–MOD7 (Figure 5A, B, C, and D2; a= 7.5 ×
10−3), a 10% lower value (Figure 5A, B, C, and D1; a =
6.75 × 10−3), and a 10% higher value (Figure 5A, B, C, and
D3; a= 8.25 × 10−3).

For the middle value of association strength (Figure 5A,
B, C, and D2), the model interpolates the main differences
between RR, RU, and UR effects reported in the experi-
mental data. Regarding RR priming (Figure 5A2), it in-
creases with the coincreasing SOA1 and SOA2 because of
the progressive increase of prospective activity of the tar-
get generated by both Prime 1 and Prime 2. The effect of
SFA on retrospective activity of the prime and on prospec-
tive activity of the target is compensated by the strong ex-
ternal current during Prime 1 and Prime 2 presentations,
resulting in the increasing RR effect with SOA1 and SOA2.
Considering RU priming (Figures 5B2 and 6B2), results
show that it increases with increasing SOA1 because of
increasing prospective activity of the target generated by
the related Prime 1 (the effect of SFA being again com-
pensated by the strong external current during Prime 1 pre-

sentation). RU priming decreases with SOA2 because of
the combined effects of increased inhibition during Prime 2
input and SFA. Turning to UR priming (Figure 5C2), results
reveal a reliable effect whose magnitude only increases
with SOA2 because of increasing prospective activity of
the target generated by the associated Prime 2. In ad-
dition, it is interesting that the resulting pattern of addi-
tivity is not stable across combinations of SOAs because
of the strong dependence of RUprimingonSOAs. Although
strict additivity is possible within a large range of SOAs, in-
cluding the ones tested experimentally (Chwilla & Kolk,
2003; Lavigne & Vitu, 1997; Balota & Paul, 1996), the pat-
tern of multiple priming changes to overadditivity for com-
binations of short SOA1 and long SOA2 (Lavigne & Vitu,
1997).
Regarding the effects of association strength a on multi-

ple priming, results are straightforward with regard to RR
(Figure 5A) and UR (Figure 5C) priming in which retroac-
tive interference is minimized due to the related Prime 2.
Decreasing values of a decreases the overall magnitude of
priming at a given combination of SOAs—that is, decreas-
ing a delays priming effects, with a larger influence on RR
than on UR priming. Focusing on RU priming (Figure 5B),
we observe that increasing a leads to increased RU priming
effects even in the short SOA1–long SOA2 cases where the
effect of retroactive interference is the strongest. More-
over, the model predicts that high values of a can make
lag1-RU priming resistant to long SOA2 (Figure 6B3). As a
consequence of the resulting ubiquity of RU priming at all
combinations of SOAs for high values of a (Figure 5B3),
the additive pattern of priming is generalized to a wider

Figure 4. Fifty normalized
effects sizes calculated from
experimental data included
in the meta-analysis of lag1-RU
priming (A,B, circles), plotted
as a function of SOA1 = tP1 +
td1 and short (A) versus long
(B) SOA2 = tP2 + td2 reported
in experimental protocols.
Fifty normalized RU priming
effects calculated from
simulation results computed
with the same values of tP1,
tP2, td1, and td2 (C, D, squares)
are plotted as a function of
SOA1 and short (C) versus
long (D) SOA2 (a = 7.50 ×
10−3, Isel = 50 μA, and
Imax
A = 420 nA).
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range of combinations of SOAs (Figure 5D3). We note
that the generalization of the pattern of additivity is also
obtained for low values of a because in this case, RR
priming is reduced to a larger amount than RU priming. It
then appears that in addition to SOAs, association strength

is a crucial parameter influencing the overall pattern of
RU priming and additivity, which accounts for the difference
between some experimental data and simulations using a
fixed value ofa (Figure 4). In addition, it points to the impor-
tance of testing for the effect of strong association strength

Figure 5. Magnitudes of multiple priming effects (msec) computed for three values of a (1: 6.75× 10−3; 2: 7.50× 10−3; 3: 8.25× 10−3): (A) RR priming;
(B) RU priming; (C) UR priming; and (D) additivity (Equations 6 and 7) displayed as a function of F. SOA1 ( y-axis) and SOA2 (x-axis) every 10 msec
(td1 = td2 = 150 msec). (E) Darker (lighter) gray levels correspond to weaker (stronger) priming effects (Isel = 50 μA and Imax

A = 420 nA).
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on the persistence of lag1-RU effects in the short SOA1–long
SOA2 condition.

Modeling of the Effects of Primesʼ Intensity on lag1-RU
Priming (MODpi)

Some data still contrast with the overall pattern of RU prim-
ing reported by the meta-analysis. Indeed, RU priming
is reported to persist at long SOA2 when processing is
oriented to the related Prime 1 because of either attentional
cues (Abad et al., 2003; Fuentes et al., 1999) or strategic pro-
cessing in cases where unrelated Prime 2 was never related
to the target during the experiment (for studies in humans,
see Becker et al., 1997; Lavigne & Vitu, 1997; Dannenbring
& Briand, 1982; for a study in monkeys, see Takeda et al.,
2005). RU priming can also be canceled at short SOA2 in
cases of visual masking of the primes (Deacon, Hewitt, &
Tamny, 1998; Masson et al., 1991). In these experiments,
Prime 1 was backward masked by Prime 2 (Masson et al.,
1991) or by a visual mask (Deacon et al., 1998), which may
have diminished activation of Prime 1, and in turn dimin-
ished its priming effect on the target. This would then al-
low retroactive interference by unrelated Prime 2 to cancel
priming (for comments, see Lavigne & Vitu, 1997; Balota
& Paul, 1996). These studies suggest that the level of pro-
cessing of the primes can influence the pattern of multiple
priming. This is in accordance with studies reporting that
the magnitude of various types of priming decreases when
shallow processing of the prime is involved because of the
type of experimental task, such as engaging in a letter search
during presentation of the prime (Smith, Bentin, & Spalek,
2001; Kaye & Brown, 1985; Henik, Friedrich, & Kellogg,

1983; Smith, Theodor, & Franklin, 1983; for reviews, see
Küper & Heil, 2008; Maxfield, 1997) or such as being faced
with attentional distraction (Otsuka & Kawaguchi, 2007;
Ortells et al., 2001; Fox, 1994, 1996; Ortells & Tudela, 1996;
Chiappe & MacLeod, 1995; Tipper & Driver, 1988; Tipper
& Baylis, 1987). Diverting a subjectʼs cognitive processing
away from the prime would result in reduced depth of pro-
cessing and in reduced levels of activation of the prime in
the subjectʼs memory, which would then decrease if not
totally cancel priming effects (Küper & Heil, 2008).
Regardingmultiple priming effects, the pattern of lag1-RU

priming depends highly on the relative effects of the related
and unrelated prime on target activation. This points to the
importance of the relative levels of processing of the primes,
which are neither manipulated nor controlled in multiple
priming experiments. In these protocols, the brightness of
the stimuli is fixed. However, stimuli durations and inter-
stimuli delays are different between Prime 1, Prime 2, and
the target. As a consequence, at the onset of the stimuli
(Prime 1, Prime 2, and target), the intensity of the screenʼs
afterglow varies depending on the duration of the preceding
stimulus and depending as well on the duration of the delay
from its onset (i.e., warning signal before Prime 1, Prime 1
before Prime 2, and Prime 2 before target). In addition,
the level of retinal persistence also varies with stimuli dura-
tions and interstimuli delays, leading to variable levels of
perceptual processing between the successive items. This
can in turn lead to different levels of stimulus saliency pro-
cessed along the neural pathways, which is approximated
in the modeling approach presented here by the fixed pa-
rameter of stimulus intensity of items during their presenta-
tion (Isel = 50 μA).

Figure 6. State diagram as a
function of spike frequencies
(Hz) of neural populations
coding for Prime 1 (x-axis),
Prime 2 ( y-axis), and target
(z-axis) during a standard
protocol (SOA1 = SOA2 =
350 msec; td1 = td2 =
150 msec) for different
ratios rI

sel = Iprime1
sel / Iprime2

sel .
The green curves correspond
to SOA1 (dark green curve =
Prime 1 input and light green
curve = ISI1), the blue curves
correspond to SOA2 (dark blue
curve = Prime 1 input and
light blue curve = ISI2). The
red curve shows the level
of prospective activity of the
neuron population coding
for the target at target onset
time, for a range of rI

sel from
0.2 to 4 (a = 7.5 × 10−3, IUR

sel =
50 μA, and Imax

A = 420 nA).
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In cortical network models, stimulus intensity has been
reported to determine the level of visual response and
subsequent retrospective activity of neurons coding for
that stimulus as well as of the resistance of retrospective
activity to new stimuli as a function of their own intensity
(Brunel & Wang, 2001). This behavior predicts that stim-
ulus intensity should influence the magnitude of priming
effects as a function of SOA and of SFA during the time
course of the protocol. It would vary before equilibrium at
which the level of prospective activity of the target does
not depend on prime intensity anymore but essentially de-
pends on activation received from related Prime 1 through
association strength a.
The activity of stimuli in memory can be determined by

sensory processing but also by high-level processes that
influence the level of activation of concepts in memory.
For example, reliable RU priming effects are widely re-
ported during processing of normal sentences whatever
the number of words interposed between the related prime
and target (lag) (Tree, Hirsh, &Monsell, 2005; Lavigne, Vitu,
& dʼYdewalle, 2000; Joordens & Becker, 1997; Deacon,
Mehta, Tinsley, & Nousak, 1995; Hess, Foss, & Caroll, 1995;
McNamara, 1992a, 1992b; Sereno & Rayner, 1992; Vitu,
1991; Bentin & Feldman, 1990; Kutas, Van Petten, & Besson,
1988; Ratcliff, Hockley, & McKoon, 1985; Reder, 1983;
Foss, 1982; Blank & Foss, 1978). This is to be compared
with the unreliable RU priming effects when words are pre-
sented in scrambled sentences or word sequences (Faust,
Bar-lev, & Chiarello, 2003; Faust & Chiarello, 1998; Sharkey
& Sharkey, 1992; OʼSeaghdah, 1989; Simpson, Peterson,
Casteel, & Burgess, 1989; Foss, 1982) because of the fact
that RUpriming arises at lag 1 but do not span lags> 1when
syntactic processing is not involved (Faust et al., 2003; Foss,
1982). This suggests that in addition to bottom–up effects
of sensory processing, top–down effects can influence the
level of activation of the primes and modify the magnitude
of lag1-RU priming.
We therefore investigated the dependence of RU priming

on the relative intensities of the primes at preequilibrium
SOAs where effects are reported as being more variable in
the experimental literature (SOA1 = SOA2 = 350 msec;
Figure 6). Results demonstrate that for a given intensity of
the unrelated Prime 2, which triggers proactive interference
in RU priming, increasing intensity of the related Prime 1
leads to increasing levels of prospective activity of the tar-
get at target onset. This permits RU priming to exhibit
stronger resistance to the unrelated Prime 2 for higher in-
tensities of Prime 1. These modeling results predict that
the relative values of intensity of Prime 1 and Prime 2 de-
termine the magnitude of RU priming at fixed SOAs. This
points to the importance of controlling or manipulating
variables in experiments on multiple priming that influence
this intensity, such as screen afterglow and backward mask-
ing of the primes depending on ISIs. This could be achieved
by masking the word stimuli or by presenting them in
different positions or by varying their visual intensity and
contrast.

Primesʼ intensity is manipulated in the model by modify-
ing the value of external currents assumed to account for
variations in the bottom–up visual signal. Under the
assumption that external currents arriving at a population
of neurons could have other origins, they could be inter-
preted to account for the influence of other variables that
are exerting top–down effects. This is the case of syntactic
processing during sentence comprehension which is re-
ported to make RU effects resistant to lag > 1. Results pre-
sented in Figure 6 are in accordance with this assumption:
They predict that further activation from syntactic process-
ing that is received by the related Prime 1 could make it
possible for RU priming to resist retroactive interference
generated by the unrelated Prime 2. To test for the possi-
bility of such a mechanism would require identification of
syntactic effects on the activation of the primes generating
lag-resistant RU priming during sentence processing.

DISCUSSION

The experimental literature on multiple priming effects
showed discrepancies between the patterns of effects
reported. Also, consensus in the research was still lacking
regarding how the variety of effects are accounted for—
effects that are a function of variables such as SOAs and
association strength. The present research provides a com-
prehensive meta-analysis of the determinants of multiple
priming effects as well as a model of how the cerebral cor-
tex performs multiple priming as a function of procedural
variables and of biophysic properties of neurons. The
meta-analytic approach has allowed for the identification
of the effects of combinations of SOAs on the pattern of
additivity of multiple priming. The cortical network model
interpolates the data for experimentally tested values of
SOAs and extrapolates to a wide range of SOA combina-
tions. It gives a general framework to interpret the additivity
pattern of multiple priming in terms of a balance between
prospective activity and retroactive interference in a model
of the cerebral cortex. In addition, the model predicts that
SOAs modulate priming effects by interacting with param-
eters embedded at the network level (association strength
a, stimulus intensity Ii

sel, and SFA Imax
A ). The model does

not require fine tuning of these parameters to specific values
and exhibits qualitatively similar behaviors within a range
of values of SOA, a, and Imax

A (Figure 3).

Synergistic Effects of Neural, Perceptive, and
Semantic Properties on Multiple Priming

A main conclusion of this research, beyond identifying
determinants of multiple priming and their effects on the
pattern of additivity, is that these determinants act in close
synergy at the network and procedural levels of processing.
At the network level, SFA appears to be an important mech-
anism that prevents overly strong proactive interference
from occurring by diminishing the activation of Prime 1
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and its associates. In turn, this diminishes the level of feed-
back inhibition and allows for reliable UR priming. The abil-
ity to quickly switch anticipation from words processed in
a sequence (as Prime 1 or Prime 2 associates) as a function
of input properties (duration and intensity) is improved
by mechanisms at the neuronal and network level such
as activation, inhibitory feedback, and SFA. The method
by which specific values of SFA are met at the population
level to allow for behavioral effects could depend on its
effects at the single neuron level and on properties of the
neuron populations. These include, for instance, within-
population connectivity and association strength ( J1),
number of neurons, and types of neurons with different
types of SFA. SFA is also important in determining the time
course of RU priming effects as a function of SOAs defined
at the procedural level (see Figure 3B for Imax

A = 420 nA,
anddiagonals of SOA1=SOA2of Figure 5B). At short SOAs,
the RU associate can be activated without much effect of
SFA, and interference is too brief to cancel RU priming;
at medium SOAs, the effect of SFA increases and adds to
retroactive interference from the unrelated Prime 2, leading
to cancellation of RU priming; and at long SOAs, RU asso-
ciates to Prime 1 have reach a level of activation that is
resistant to the combined effects of SFA and interference.
Given that lag0 priming can be sustained at very long
SOAs, the time course taken up by lag1-RU priming is
not a passive phenomenon, in the sense that it requires
the combined effects of association strength and SFA
(which could be considered to be passive properties of
the system, although SFA depends on the level of activa-
tion of a given neuron population) but also of the pro-
cessing time of the unrelated Prime 2 (SOA2).

The switch between RU and UR priming depends not
only on the relative processing durations of the primes
(SOAs) but also on their relative intensities, which depend
in turn on the relative positions of primes in multiple prim-
ing protocols. Processing time and intensity would then
define the “perceptive” salience of a prime word, and the
RU/UR switch could be interpreted as an adaptive mech-
anism allowing the system to activate words that are asso-
ciated with either the previous or the subsequent word in
a sequence, depending on their respective salience (of
bottom–up or top–down origin). The most salient word
would be selected in real time to direct recall of word
associates and concept representations and would orient
semantic anticipations in working memory. Words asso-
ciated to Prime 1 would either resist interference from a
less salient Prime 2 or be deactivated by a more salient
Prime 2 to allow its associates to be activated. The relative
amounts of proactive and retroactive interference on se-
mantic priming could then depend on the relative salience
of the primes.

Types of Semantic Relations

The meta-analyses presented here have included studies
manipulating prime–target relatedness according to var-

ious types of relations not always reported and sometimes
mixed in experimental studies. They include direct Step 1
associations, semantic relations through feature overlap
(see Brunel & Lavigne, 2009; Hutchison, 2003 for re-
views), and ambiguous target words (see Balota & Paul,
1996) but not cases where the two words are indirectly re-
lated (not tested in multiple priming, to our knowledge) or
unrelated but part of larger contexts such as scripts (Chwilla
& Kolk, 2005). This heterogeneity of the types of prime–
target relations points to the possibility that the pattern of
results could depend on the precise type of relation. Too
few studies tested multiple priming effects using semantic
relations such as feature overlap and coexemplars (see
Chenery et al., 2004; Fuentes et al., 1999). Fewmore studies
(10) explicitly tested multiple priming effects using primes
related to the meanings of ambiguous target words (see
Balota & Paul, 1996; Schvaneveldt, Meyer, & Becker, 1976).
When tested in the meta-analysis, the pattern of multiple
priming effects on unambiguous and ambiguous targets
shows that RU priming is of smaller magnitude than RR
priming. However, similar patterns of results do not dem-
onstrate similar encoding of unambiguous and ambiguous
targets in the matrix of the model, leaving open the ques-
tion of the encoding of target ambiguity in the synaptic
matrix and its effects on multiple priming. More generally,
the current literature does provide us with a straightfor-
ward account of multiple priming effects as a function of
the type of semantic relation involved. Brunel and Lavigneʼs
(2009) modeling approach of single lag0 priming ac-
counts for a large variety of qualitatively different types of
lag0 priming effects in terms of quantitatively different time
courses and magnitudes within a unified model. In this
model, priming effects correspond to the propagation of
activation between concepts and features all coded by neu-
ron populations. Various types of semantic relations have
been encoded by different synaptic matrices assumed to
result from previous learning. Associations and feature over-
lap are described within a unified synaptic structure of neu-
ron populations—in other words, a structure that codes
concepts at the level of populations of neurons. Given that
each population is specific to a given word, the coding at the
population level resembles localist coding. However, some
degree of overlap is possible between neuron populations,
corresponding to a distributed coding of concepts. In Brunel
and Lavigneʼs model as in the model proposed here, con-
cepts could be encoded by random subsets of neurons that
would generate overlaps between concepts, without qualita-
tively changing the effects observed (see Romani, Amit, &
Mongillo, 2006; Curti, Mongillo, La Camera, & Amit, 2004).
Here, we have chosen to study nonoverlapping neuron
populations to simplify the description of the model, under
the assumption that neuronal coding is sparse (Booth &
Rolls, 1998).
With regard to multiple priming effects—given that the

meta-analysis did not permit us to demonstrate an effect of
the type of relation on the pattern of effects and because
of the quantity of effects requiring investigation in multiple
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priming—we have focused on the simplest case of direct
association between the primes and the target embedded
in a predefined synaptic matrix.
For the models simulations, we have therefore used

the simple and generic relationship of direct association
between primes and targets, as described in terms of the
synaptic potentiations between populations of neurons—
shown in Equation 5 in the Methods section of the model.
As can be seen in Figure 3A, association strength interacts
with SFA to determine the RU/UR switch from activation
of previous word associates to activation of subsequent
word associates. The strength of the association between
these words and the primes would then determine seman-
tic relevance of the associates relative to the sequence of
primes. However, although studies on lag0 single priming
and predictions from the current model of multiple prim-
ing indicate strong effects of association strength on the
pattern of multiple priming effects, values of association
strength are rarely reported and never manipulated in ex-
periments. In consequence, they probably vary between
protocols and even between conditions. In the literature
on multiple priming, the lack of studies controlling for
the type and strength of the association points to the need
for a more thorough experimental investigation of its ef-
fects to compare with models developed on the basis of
different synaptic matrices. Further research could test
for the effects of differential association strength between
each prime and its associated targets. This could be ex-
plored in human studies by cross-manipulating association
strength and prime position, and it could be explored in
monkey studies by manipulating the level of pair learning
as the number of co-occurrences between each prime and
its associate. Combined effects on behavioral and electro-
physiological data would be of great help to further de-
velop the model.
Direct associations have been reported to permit lag1

priming in monkeys (Takeda et al., 2005). The lag1 priming
effects on retrospective activity of the primes and on pro-
spective activity of the target as well as on RTs have been
accounted for by themodel. However, the results of Takeda
et al. (2005) show that some neurons exhibit strong retro-
spective and weak prospective activities when their pre-
ferred stimulus is presented as prime (cue) or as target
(test), respectively (i.e., neurons with “cue holding activ-
ity”), whereas some other neurons exhibit weak retrospec-
tive and stronger prospective activities when their preferred
stimulus is presented as prime (cue) or as target (test), re-
spectively (i.e., neurons with “target recall” activity). These
results are very interesting in light of the question of asso-
ciation strength, in that they suggest that the variable levels
of retrospective and prospective activities of different neu-
ron populations coding for the prime and target could rely
on heterogeneous values of association strengths between
these neurons. Both types of neurons are activated when
their preferred stimulus is presented as prime because they
code for the prime or as target because they code for the
target and are thus activated by those coding for the prime.

However, their precise level of activity could differ because
of different amounts of activation received from other neu-
rons, through variable association strengths at the neuron
level. The mean field approach used here suggests that
variations in association strength could account for such
effects at the population level, but a model of integrate
and fire neurons would be more appropriate to test for this
possibility at the neuron level. The variability in interneuron
association strengths after a given learning protocol asks
the question of the learning and precise nature of the vari-
ability of interneuron association strengths.

Learning of Association Strength

Themodeling approach has permitted us to investigate the
effects of association strength a between the primes and
the target, defining realistic values of mean synaptic poten-
tiation Ja between neuron populations (Table 1). In the
present research, values of association strength could be
varied between simulation trials, but they were fixed during
trials and assumed to result from previous learning. Asso-
ciations between items are reported to be learned in mon-
keys on the basis of temporal contiguity (Booth & Rolls,
1998; Yakovlev, Fusi, Berman, & Zohary, 1998; Sakai &
Miyashita, 1991; Stryker, 1991; Miyashita, 1988). This is in
agreement with results from human studies showing that
priming effects are inversely proportional to the lexical dis-
tance and proportional to the frequency of co-occurrence
between words in texts (Spence & Owens, 1990; Postman
& Keppel, 1970; Deese, 1965; see Prior & Bentin, 2003,
2008). In network models, the Hebbian rule of synaptic
potentiation/depression subtending learning at the neuron
and population levels leads to associations between items
proportional to the number of temporally contiguous
occurrences of these items (Mongillo et al., 2003; Brunel,
Carusi, & Fusi, 1998; Brunel, 1996), defining synaptic ma-
trices that are qualitatively similar to the one used here (for
other types of matrices, see Brunel & Lavigne, 2009). In ad-
dition, some studies (e.g., Mongillo et al., 2003) show how
learned associations between primes and targets permit
prospective activity to happen during simple lag0 priming,
such as reported in monkeys (Erickson & Desimone,
1999). In computational models of the cerebral cortex, as-
sociation strength is slowly learned through unsupervised
Hebbian learning. Learning is unsupervised in the sense
that neuron activity, taken into account by the Hebb rule,
is determined solely by input and not by a “desired” output
selected a priori. This is a realistic learning procedure at
the synaptic level in that it involves a simple and classic
Hebb rule related to spike timing-dependent potentiation
(Graupner&Brunel, 2007) and does not involve error back-
propagation. This learning procedure is also realistic at the
behavioral level in that it does not require “intentional”
supervision from an external source based on “desired” be-
haviors. Here, the stimuli themselves are the inputs that
“supervise,” in the sense that they determine learning of
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associations with other co-occurrent or time-correlated
stimuli (see Mongillo et al., 2003). It differs from the super-
vised learning procedures used in most connectionist
models, except for the Hopfield-type distributed networks
(for discussions, see Becker et al., 1997;Masson et al., 1991).

In models of learning in the cerebral cortex, synaptic
weights usually change on a time scale far slower than
short-term forms of priming processes, mostly because
slow learning is shown to be a condition for memory sta-
bility and storage capacity (see Brunel et al., 1998). The pos-
sibility for rapid synaptic learning occurring during the
experiment has been reported to permit long-term forms
of priming at lags > 1 and at long delays of several minutes
(i.e., see “long-term priming” in Becker et al., 1997). This
effect was modeled by a rapid learning rule in a connec-
tionist network, which increased associations between
neurons coding for features of the prime, including certain
features of the target, during the experiment. This mecha-
nism of enhanced association between target features
during prime processing makes priming resistant to inter-
ference for several seconds and up to lag8. Consequently,
it makes priming effects independent of prime–target SOAs
and lag, which is not in accordance with the meta-analysis
of the data on multiple priming reporting no significant
priming at lag > 1. An explanation is that in the study of
Becker et al. (1997), long-lasting resistance to interference
was not reported with the lexical decision task but was re-
ported with the semantic judgment task. The latter was
prone to greater effects of strategic processes of recovering
the prime in STM during target processing, which is known
to enhance priming effects (see Balota & Paul, 1996; Neely,
1991). This points to the central importance of accounting
for the differential effects of experimental tasks on the
magnitude of priming and on the pattern of multiple prim-
ing. This poses a great challenge to models of priming, to
be linked with the mechanism of rapid learning during
priming trials. It also motivates further research in that di-
rection. Although the current model accounts for a lot of
data by assuming that learning is slow compared with a trial
duration, fast synaptic potentiation has been considered to
be a relevant mechanism of rapid relearning in a cortical
network model of monkey behavior. This was explored in
experiments where rules of stimuli–responses associations
were rapidly switched (Fusi, Asaad, Miller, & Wang, 2007).
Short-term synaptic facilitation has also been considered to
be amechanism of activation in workingmemory (Mongillo,
Barak, & Tsodyks, 2008). Rapid and slow learning are not
exclusive mechanisms and could then combine to influ-
ence the pattern of multiple priming.

Multiple Priming in Working Memory

Themultiple priming paradigm involves not only processes
of activation and inhibition within the semantic structure
but also processes of maintenance of, and of joint priming
from, several items simultaneously activated in working

memory. Modeling of such phenomena at the neural level
provides us with new insights as to how concepts are pro-
cessed and organized together, on the basis of priming
and selection processes in working memory, as a function
of their semantic relations in long-term memory and of the
sequence of items presented. During the processing of a
sequence of items, items that are actually presented as well
as their associates are activated in working memory. Non-
selective inhibitory feedback sets a limit on the capacity of
the working memory system, which prevents runaway ex-
citation and permits selective activation of neuron popula-
tions. The number of coactivated populations coding for
items depends on their precise levels of activation (see
Amit et al., 2003), themselves depending on the synaptic
matrix and network dynamics (protocol, SFA, neuron dy-
namics). It follows then that although working memory
capacity is constant in terms of the global level of activation
allowed by global feedback inhibition, it can be variable in
terms of the number of items activated, depending on their
precise levels of activation (Brunel & Lavigne, 2009). The
lower the level of activation of items, the more items can
be activated simultaneously. Although all three types
of multiple priming effects (RR, RU, and UR) involve acti-
vation of the target by the associated prime(s), they also
involve interference by all the other populations activated
during the protocol. This implies that for all types of multi-
ple priming, facilitation and interference do not function as
all-or-nothing notions but correspond rather to com-
binations of activation and inhibition of various origins.
On one hand, the RU and the UR conditions correspond
to weak facilitation in two ways: (1) lesser activation re-
ceived by the target from only one associated prime and
(2) stronger inhibition due to the activation of two groups
of pi = 3 items (two primes and associates in each group,
including the target). On the other hand, the RR condition
corresponds to strong facilitation in two ways: (1) more
activation received from two related primes from the same
group and (2) less inhibition because of the activation of
pi = 3 items only. Consequently, the effects of two related
primes in the RR condition appear to be of greater mag-
nitude when both primes are presented for more than
50 msec than when one of them is presented for less than
50 msec (Figure 5A). In addition, different patterns of
additivity are a combination of variable levels of additiv-
ity in the RR condition and variable levels of proactive or
retroactive interference in the RU and UR conditions, re-
spectively. Strictly additive effects correspond to cases of
slight interference by the unrelated prime in the RU or
UR conditions (Figure 5D2, short SOA2). Underadditive
effects correspond to cases of maximal effects in the RU
or UR condition (Figure 5D2, long SOA1 and short SOA1,
respectively). Overadditive effects correspond mainly to
cases of strong retroactive interference in the RU condition
(Figure 5D2, long SOA2). The modeling approach of these
processes provides us with new ways of describing resis-
tance to interference and recall performance in terms of
activation and inhibition of a target during multiple prim-
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ing processes, depending on the timing of presentation,
condition of relatedness and synaptic matrix.
The model presented here makes no assumption as to

the topographic localization or relative positions of the
neurons involved in multiple priming. However, experi-
mental studies allow us to point out some areas reported
to be involved in semantic priming. Electrophysiological
data from monkeys point to the role of the temporal and
prefrontal areas in semantic priming. Prospective activity
has been reported in monkeys in the PF (Rainer et al.,
1999), AIT, and perirhinal cortices (Naya et al., 2001, 2003;
Yoshida et al., 2003; Erickson & Desimone, 1999; Sakai &
Miyashita, 1991; see Murray, Baxter, & Gaffan, 1998; Buckley
& Gaffan, 1998a, 1998b). Likewise, semantic processing is
reported in humans to involve the frontal cortex (Gough,
Nobre, & Devlin, 2005; Khateb et al., 2003) and the anterior
temporal lobe (Mummery, Shallice, & Price, 1999; Nobre
& McCarthy, 1995; Nobre, Allison, & McCarthy, 1994;
see Henson, 2003). A recent fMRI study reports that in-
creasing semantic relatedness is associated with increased
activation in the left inferofrontal, bilateral mediofrontal,
and right mediotemporal gyri (“semantic enhancement”;
Raposo, Moss, Stamatakis, & Tyler, 2006; see also Kuperberg,
Deckersbach, Holt, Goff, & West, 2007; Tivarus, Ibinson,
Hillier, Schmalbrock, & Beversdorf, 2006).

Combined Constraints from Experimental Data
and Model Predictions

The approach presented here, which combined a set of
experimental data andmodeling results, aims to contribute
to closing the gap between cognitive and brain processes
by linking the behavior of subjects to that of neuron popu-
lations. The success of such approaches depends on the
reliability of the experimental data and the realism of the
model used, but a good fit of the data does not ensure that
the model parameters and their values are either the nec-
essary ones or the sufficient ones. That is why the model
must be able to tackle larger sets of effects reported in
the literature and make clear and straightforward pre-
dictions of effects to be tested experimentally. Regarding
the statistics of the priming effects to be modeled, a test
of not only their magnitude but also their variability would
require the addition of stochastic external noise currents
as external inputs to the model. In addition, external noise
could have effects on the dynamics of multiple priming in
that it has been proven to permit sequential deactivation
and prevent global forgetting in working memory (Amit
et al., 2003). Recent research has shown that the statistics
of firing rates during retrospective activity (i.e., spike rates
and coefficient of variation of the interspike interval) can
be reproduced in a model if synaptic efficacies are a non-
linear function of the presynaptic firing rate because of a
short-term depression mechanism (Barbieri & Brunel,
2007). The choice for a noiseless version of the model pro-
posed here was guided by the need for simplicity in the
description of the effects and in the interpretation of popu-

lation dynamics. However, taking short-term synaptic de-
pression into account could be a way to investigate the
effects of stochastic noise on retrospective and prospective
activities in priming.

The model proposed here fits many of the results of the
meta-analysis on multiple priming. On this basis, it pre-
dicts the magnitude of the three conditions of multiple
priming effects within a wide range of values of SOA and
association strength. These two variables having not yet
been cross manipulated in experimental studies, additional
results would enable testing of the modelʼs robustness. In
addition, the model predicts that the relative intensities of
activation of populations coding for Prime 1 and Prime 2
also influence the magnitude of lag1-RU. Testing the model
could be done by testing, at lag1 and lag > 1, the effects of
variables influencing the time during which the population
coding for the prime is strongly activated. This could be
done by manipulating the prime duration, the type of pro-
cessing of the prime (i.e., lexical vs. semantic, as defined by
the task), and syntactic factors permitting sustained ac-
tivation of the prime and/or target. Regarding the effects
of target ambiguity, an interesting direction that could
combine experimental and modeling approaches would
be to explore single andmultiple priming of ambiguous tar-
gets by testing different types of ambiguous coding in the
synaptic matrix and by comparing their effects on priming
of ambiguous targets. Regarding the effects of association
strength and of the type of semantic relation between the
related prime and the target, the nonadaptive cortical net-
work model of semantic priming proposed by Brunel and
Lavigne (2009) suggests that the type of semantic relation
as well as the association strength would modify the pat-
tern of effects. An interesting extension would be to embed
Brunel and Lavigneʼs matrices in the current adaptive
model, but further behavioral data are needed for a com-
plete meta-analysis of these variables and to put forth
strong predictions of the model behavior. In addition,
studies in monkeys could permit certain parameters to
be manipulated that are hardly manipulable in humans,
such as learned association strength as defined in terms
of item co-occurrence and type of relation as defined
in terms of the structure of the semantic field of the
prime and target (see Brunel & Lavigne, 2009). Electro-
physiological recording of neuron activity during multiple
priming protocols could then lead to correlation between
these parameters, neuron activity, and response times.
Data at the behavioral and neuronal levels would there-
fore enable researchers to test model predictions as well
as to propose future developments.
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