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1  | INTRODUCTION

For over a century, the paradigm has been that the lack of recombi‐
nation associated with asexual reproduction should reduce additive 

genetic variance and produce clonal progenies, thus resulting in poor 
capacities to generate new combination of genotypes (Crow, 1992; 
Edhan, Hellman, & Sherill‐Rofe, 2017; Song, Scheu, & Drossel, 2012). 
In this context, adaptation to changing environmental conditions 
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Abstract
Adaptation to changing environmental conditions represents a challenge to parthe‐
nogenetic organisms, and until now, how phenotypic variants are generated in clones 
in response to the selection pressure of their environment remains poorly known. 
The obligatory parthenogenetic root‐knot nematode species Meloidogyne incognita 
has a worldwide distribution and is the most devastating plant‐parasitic nematode. 
Despite its asexual reproduction, this species exhibits an unexpected capacity of ad‐
aptation to environmental constraints, for example, resistant hosts. Here, we used a 
genomewide comparative hybridization strategy to evaluate variations in gene copy 
numbers between genotypes of M. incognita resulting from two parallel experimental 
evolution assays on a susceptible vs. resistant host plant. We detected gene copy 
number variations (CNVs) associated with the ability of the nematodes to overcome 
resistance of the host plant, and this genetic variation may reflect an adaptive re‐
sponse to host resistance in this parthenogenetic species. The CNV distribution 
throughout the nematode genome is not random and suggests the occurrence of 
genomic regions more prone to undergo duplications and losses in response to the 
selection pressure of the host resistance. Furthermore, our analysis revealed an out‐
standing level of gene loss events in nematode genotypes that have overcome the 
resistance. Overall, our results support the view that gene loss could be a common 
class of adaptive genetic mechanism in response to a challenging new biotic environ‐
ment in clonal animals.
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represents a challenge to parthenogenetic organisms. However, ev‐
idence collected over the last decade indicates a considerable in‐
traclonal variation in many asexually reproducing eukaryotic animals 
(e.g., Badaeva, Malysheva, Korchagin, & Ryskov, 2008; Fontaneto, 
Kaya, Herniou, & Barraclough, 2009; Monti, Mandrioli, Rivi, & 
Manicardi, 2012) and raises question about the very notion of clone 
(see Loxdale, 2009 for review). Moreover, artificial selection studies 
under laboratory conditions showed that populations reproducing 
by obligate parthenogenesis are able to rapidly respond to strong 
selective constraints such as abiotic stress or thermal adaptation 
(Doroszuk, Wojewodzic, & Kammenga, 2006; Lombardo & Elkinton, 
2017; Robin, Andanson, Saint‐Jean, Fabreguettes, & Dutech, 2017).

In the case of plant–parasite interactions, another corpus of 
studies illustrated the adaptation of various asexual species to their 
hosts, for example, in aphids (Agarwala & Choudhuri, 2014; Loxdale, 
2008) or in fungi (de Jonge et al., 2013; Seidl & Thomma, 2014). 
However, it remains enigmatic how phenotypic variants are gener‐
ated in these a priori clonal populations that are known to respond at 
least partially to selection, including changes in the host plant when 
plant parasites/pathogens are considered. The root‐knot nematode 
(RKN) Meloidogyne incognita is a plant parasite of worldwide agricul‐
tural importance. It reproduces in an asexual way by obligate par‐
thenogenesis without meiosis (i.e., apomixis), and several hundreds 
of offspring are produced by a single female that form virtually 
clonal populations (Castagnone‐Sereno, Danchin, Perfus‐Barbeoch, 
& Abad, 2013). However, although these clones share a priori the 
same genetic heritage, they can exhibit phenotypic variations when 
exposed to unfavourable environments, for example, when they are 
in interaction with host plants harbouring resistance genes. Indeed, 
virulent populations (i.e., able to reproduce on resistant plants) have 
been reported in the field (reviewed in Barbary, Djian‐Caporalino, 
Palloix, & Castagnone‐Sereno, 2015). To avoid confusion in termi‐
nology, the term “virulence” as used for the purpose of this study 
will designate the ability of the nematode to overcome host resis‐
tance and successfully establish infection. Experimental studies 
have clearly demonstrated the emergence of virulent specimens 
in the progeny of M. incognita avirulent females and that inheri‐
tance of virulence is not Mendelian (Bost & Triantaphyllou, 1982; 
Castagnone‐Sereno, Wajnberg, Bongiovanni, Leroy, & Dalmasso, 
1994; Jarquin‐Barberena, Dalmasso, De Guiran, & Cardin, 1991). 
Indeed, at the phenotypic level, the proportion of virulent specimens 
in the originally avirulent population increases over generations, but 
never reaches 100% (as should be expected in case of strict asexual 
reproduction and with the exception of the rare escape cases that 
may occur). Some nucleotidic variations have been found between 
avirulent and virulent nematodes resulting from experimental evolu‐
tion (Neveu, Jaubert, Abad, & Castagnone‐Sereno, 2003b; Semblat, 
Rosso, Hussey, Abad, & Castagnone‐Sereno, 2001). However, they 
probably do not represent the only factor that could be responsible 
for the switch from avirulence to virulence, since their distribution 
proved to be random in natural virulent populations (P. Castagnone‐
Sereno, unpublished data). From this perspective, M. incognita thus 
provides an important model for the comprehensive study of the 

various molecular mechanisms that might promote adaptation of 
parthenogenetic animals to environmental changes. In addition, 
the M. incognita genome sequence and annotation have been deci‐
phered (Abad et al., 2008), which reinforces the asset of this exper‐
imental system.

In recent years, whole‐genome sequencing has shown that be‐
sides point mutations, copy number variations (CNVs) constitute 
another important mechanism of genomic variation submitted to 
selection. This feature has been identified in most model organ‐
isms across the plant or animal kingdom (Brown et al., 2012; Locke 
et al., 2015; Yu et al., 2013; Zmienko, Samelak‐Czajka, Kozlowski, & 
Figlerowicz, 2016) and consists of DNA segments typically exceeding 
1 kb that are variable in copy number in comparison with a reference 
genome, share a sequence identity higher than 95% and are dispersed 
throughout the genome (Alkan, Coe, & Eichler, 2011). CNVs can ei‐
ther be inherited from the previous generation or appear de novo 
through duplication/deletion events, and their fixation by drift or 
selection may contribute to the creation of genetic novelty result‐
ing in species adaptation to stressful or novel environments (Katju 
& Bergthorsson, 2013; Kondrashov, 2012). For example, it has been 
shown that CNVs may lead to adaptive phenotypes such as copper 
resistance in yeast (Hull, Cruz, Jack, & Houseley, 2017) or insecticide 
resistance in the dengue mosquito Aedes aegypti (Faucon et al., 2017).

In nematodes, CNVs have been essentially documented at the ge‐
nome scale in the model species Caenorhabditis elegans. In this model 
nematode, the rate of CNV per gene and per generation is two orders 
of magnitude higher than the spontaneous rate of point mutation per 
coding nucleotide (Lipinski et al., 2011). In addition, CNV has been 
extensively detected in 12 natural populations of C. elegans, affecting 
over 5% of the genes in the genome, thus allowing even very closely 
related strains to be distinguished (Maydan, Lorch, Edgley, Flibotte, 
& Moerman, 2010). Deletions relative to the canonical N2 strain 
appeared more common in these genetically different populations 
than duplications, affecting gene families involved in environmental 
responses and innate immunity (Maydan et al., 2010). A further inves‐
tigation on experimental C. elegans lineages indicated that multiple 
duplications and deletions can reach intermediate to high frequen‐
cies in independent genotypes, and several lines of evidence suggest 
that some of these changes were adaptive to laboratory conditions 
(Farslow et al., 2015). Thus, CNV likely represents an important, yet 
incompletely characterized, source of de novo genetic variation and 
adaptive potential in many eukaryotes, including parasitic species.

Here, we tested the hypothesis that CNV may contribute to 
the adaptive capacities of the parthenogenetic RKN Meloidogyne 
incognita, that is, its ability to overcome plant resistance genes. 
For that purpose, we performed an array comparative genomic hy‐
bridization (aCGH) analysis of two independent pairs of avirulent 
vs. virulent genotypes (i.e., nonadapted vs. adapted to the host 
resistance, respectively), taking advantage of the parthenogenetic 
reproduction of the nematode to set up near‐isogenic lines (NILs) 
through experimental evolution on susceptible or resistant host 
plants, respectively. This strategy made it possible to draw up a 
comprehensive genomewide landscape of gene CNVs associated 
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with the virulence of the nematode and resulted in a set of 184 
genes differentially affected by CNV between avirulent and vir‐
ulent NILs. We further filtered this list of candidate CNVs and 
identified 33 genes that systematically showed the same highly 
supported changes in copy number across replicates between the 
two pairs of virulent vs. virulent NILs. The fold change values in‐
dicated gene copy losses in virulent nematodes, which were then 
tested by qPCR. This validation step confirmed a subset of 18 
genes exhibiting CNVs conserved between two independent sets 
of avirulent and virulent lines. To our knowledge, this study rep‐
resents the first genomewide analysis of the distribution of CNVs 
in the genome of a nonmodel nematode and provides new insights 
into the genetic mechanisms that may promote adaptation of a 
parthenogenetic animal to changing environmental conditions.

2  | MATERIALS AND METHODS

2.1 | Nematode avirulent and virulent near‐isogenic 
lines

Experimental evolution was conducted in the laboratory on two 
M. incognita isolates from the living RKN collection of the Institut 
Sophia Agrobiotech, both originally sampled in the field and aviru‐
lent against the tomato Mi‐1.2 resistance gene (Figure 1a). In order 
to ensure that the observed phenotypes were the result of our ex‐
perimental evolution protocol (independently of the genetic back‐
ground of the nematodes), we selected isolates with very different 
geographic origins (Kursk, Russia and Morelos, Mexico, respec‐
tively). In addition, to eliminate any potential within‐population 

F I G U R E  1   Nematode avirulent 
and virulent lines used in this study. (a) 
The experimental evolution procedure 
designed to generate independent pairs of 
Meloidogyne incognita near‐isogenic lines 
avirulent or virulent against the tomato 
Mi‐1.2 resistance gene. (b) Reproduction 
of Meloidogyne incognita avirulent and 
virulent near‐isogenic lines on the 
resistant tomato cv. Piersol

(b)

(a)
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heterogeneity, a line was raised from each field population, start‐
ing from the progeny of a single female carefully dissected from the 
root tissues along with its egg mass, which was then used to rein‐
oculate a tomato plant. Because of the obligatory mitotic, parthe‐
nogenetic mode of reproduction of M. incognita, the second‐stage 
juveniles (J2s) that hatched from each egg mass were considered 
as a clonal line (Castagnone‐Sereno et al., 2013). From this starting 
material, sets of replicated lines were repeatedly inoculated under 
controlled conditions on susceptible (cv. Saint Pierre) or Mi‐1.2‐re‐
sistant (cv. Piersol) tomatoes, according to described experimen‐
tal evolution procedures (Castagnone‐Sereno, Bongiovanni, & 
Wajnberg, 2007; Jarquin‐Barberena et al., 1991). This gave rise to 
two pairs of originally avirulent vs. derived virulent near‐isogenic 
lines (NILs). Due to their apomictic reproduction, these pairs of 
NILs were considered to vary only in their (a) virulence against the 
Mi‐1.2 resistance gene.

2.2 | DNA sequencing, SNP calling and 
phylogenetic analysis

For each of the two pairs of avirulent vs. virulent NILs from 
Kursk and Morelos, DNA was extracted from eggs as described in 
Perfus‐Barbeoch et al. (2014). In summary, eggs were grinded for 
5 min in a Dounce homogenizer to access nuclei. Nuclei were puri‐
fied by 20‐min centrifugation at 7800 g and incubated at 37°C for 
5 min with 1 μl MNase (15 U). Digested DNA was extracted with 
phenol/chloroform, precipitated with isoamyl alcohol, washed 
with 70% ethanol and suspended in 40 μl qPCR grade water. 
To generate the 4 libraries to be sequenced, MicroPlex Library 
Preparation™ kit (Diagenode) was used. Each barcoded library 
was then quantified by qPCR (KAPA Library Quantification Kit, 
KAPA Biosystems) and standardized to 4 nM before being pooled 
altogether. Illumina sequencing was performed at UCAGenomiX‐
IPMC platform (Sophia Antipolis, France) on NextSeq 500 to gen‐
erate 75‐bp single reads.

After the filtering of low‐quality bases, each library was 
aligned to the M. incognita reference genome with BWA (Li, 2013) 
and alignments with mapping quality score <20 were removed 
with SAMtools (Li et al., 2009). We used the FreeBayes variant 
detection tool (Garrison & Marth, 2012) to call SNPs and small‐
scale insertions/deletions, incorporating all the library alignment 
files simultaneously, and produced a variant call file (VCF). We 
filtered the resulting VCF file with the vcffilter function of vc‐
flib (Garrison, 2018), retaining the positions that had more than 
20 Phred‐scaled probability and a coverage depth > 10. Finally, 
we used SnpEff (Cingolani et al., 2012) to annotate variants at 
coding regions. SNPs were concatenated into a supermatrix that 
was used as input to IQ‐TREE (Nguyen, Schmidt, von Haeseler, 
& Minh, 2015) to estimate the phylogeny under maximum‐likeli‐
hood criterion using the GTR+ASC+G model. Bootstrap was used 
to assess branch support. The resulting tree was visualized in 
FigTree (Rambaut, 2018).

2.3 | Evaluation of the ability to reproduce on 
resistant tomato

At the end of the selection procedure, the two pairs of avirulent 
vs. virulent NILs from Kursk and Morelos were compared for their 
ability to reproduce on resistant tomatoes. Experiments were con‐
ducted in a climatic chamber maintained at 22°C (±2°C) with a 14‐
hr light cycle. Mi‐1.2‐resistant Piersol tomato seedlings were grown 
individually in 50‐ml plastic tubes containing a steam‐sterilized 
sandy soil, and 4‐6 true leaves plants were inoculated with a cali‐
brated water suspension of 25 J2s, in order to avoid any influence of 
density‐dependent effects on nematode reproduction parameters. 
Seven weeks after inoculation, the root systems of 10 to 13 plants 
for each NIL were gently washed free from soil in tap water, im‐
mersed in cold eosin yellow (0.1 g/L water) and stirred for 30 min to 
stain nematode egg masses. Numbers of egg masses per root system 
were then counted under a magnifying glass. Preplanned compari‐
sons between means were done with Student's t least significant dif‐
ference test at p = 0.01. All computations were done using analysis 
of variance models implemented in the PROC GLM procedures of 
the sas/stat package (SAS Institute Inc., 1990).

2.4 | Oligonucleotide array CGH design

A 4 × 180 K custom CGH array (Agilent Technologies) was gener‐
ated based on the 2,995 super‐contigs of the M. incognita Mi1V1 ref‐
erence genome sequence obtained from an avirulent isolate (Abad 
et al., 2008). A total of 173,539 probes of 60‐bp length, representing 
a global coverage of ~10.4 Mb, were designed from the 19,212 pro‐
tein‐coding genes according to Agilent probe design procedure at 
an average rate of ~9 probes/gene (https://earray.chem.agilent.com/
suredesign/). In addition, 380 probes randomly selected from the 
global set, 10× replicated, together with 3,440 Agilent Technologies 
control probes were included for hybridization quality control.

2.5 | DNA isolation, DNA labelling and array 
hybridization

For each sample, genomic DNA was purified from ~200 μl of nem‐
atode eggs according to a standard phenol/chloroform protocol 
(Sambrook, Fitsch, & Maniatis, 1989) and stored at −80°C until use. 
Quality of DNA was checked by PCR using the Meloidogyne‐specific 
primers MelF and MelR (Tigano, Carneiro, Jeyaprakash, Dickson, & 
Adams, 2005). Sample identity to the species level was further con‐
firmed using a species‐specific SCAR marker as described previously 
(Randig, Bongiovanni, Carneiro, & Castagnone‐Sereno, 2002). For 
each of the four genotypes tested (i.e., two geographic origins × two 
(a)virulence phenotypes), three biological replicates were processed.

The sample preparation and hybridization were performed as 
specified by Agilent Technologies on the HELIXIO platform (Helixio, 
Saint‐Beauzire, France). Briefly, pairs of test (virulent NILs) and 
reference (avirulent NILs) DNAs (500 ng) were digested with AluI 

https://earray.chem.agilent.com/suredesign/
https://earray.chem.agilent.com/suredesign/
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and RsaI and labelled with fluorescent dyes Cy5 and Cy3, respec‐
tively. Absorbance was measured at 260 nm (DNA), 550 nm (Cy3) or 
650 nm (Cy5) to calculate the specific activity. Array cohybridization 
was then performed at 65°C for 24 hr. After washing, arrays were 
scanned at a 3 μm resolution on the G2505C Microarray Scanner 
and images were processed using the Feature Extraction software v. 
11.5.1.1 (Agilent Technologies). Quality control reports with a set of 
evaluation metrics were generated from each of the images to assess 
the quality of the various laboratory steps (label, hybridization, wash, 
scan steps), and only images that showed metrics that are within the 
suggested threshold ranges were considered for further analysis.

2.6 | Data normalization and statistical analysis

Before CNV prediction, intra‐array normalization of the data was 
performed using specific algorithms of the Feature Extraction 
software, and the average log2 ratio of each probe (i.e., log2 [cy5 
processed signal/cy3 processed signal]) was computed. CNVs 
were called as segments with a mean |ratio| > 1.50 (i.e., fold 
change |FC| > 1.50). In order to reduce the number of false posi‐
tives, probes were filtered; that is, only those showing the same 
flag of intensity signal for all the three biological replicates of a 
given nematode genotype were considered for further statistical 
analysis. Comparisons between reference (avirulent) and test (vir‐
ulent) samples were carried out using t tests. To take into account 
the occurrence of false positives, p‐values < 0.05 after FDR cor‐
rection (false discovery rate; Benjamini & Hochberg, 1995) were 
considered statistically significant.

2.7 | Functional characterization of genes affected 
by CNVs

Genes corresponding to probes that were affected by CNVs were 
retrieved from the M. incognita Mi1V1 genome sequence (http://
meloidogyne.inra.fr). To determine which functional categories were 
found in these genes, we performed a gene ontology (GO) annotation 
inferred from the InterPro protein domains annotation using AmiGO, 
the GO Consortium's annotation and ontology toolkit (Carbon et al., 
2009). The GO‐slim annotations were split into three ontologies (bio‐
chemical function, cellular component and molecular function). In ad‐
dition, we used a hypergeometric test as implemented in FUNC v0.4.7 
(Prüfer et al., 2007) to detect enriched GO terms in the genes showing 
significant variation in copy numbers between avirulent and virulent 
genotypes. We considered the GO terms that returned a FDR thresh‐
old < 0.05 as significantly enriched. To further characterize these 
genes, we compared them to a list of > 100 M. incognita putative ef‐
fectors (i.e., genes encoding secreted proteins that mediate interac‐
tions with the host), as recently reviewed in Nguyen et al. (2018).

2.8 | Validation of CNVs by qPCR

In order to select a short list of genes systematically affected 
by CNVs, an additional custom CNV‐calling pipeline with higher 

stringency was designed with the following parameters: (a) probes 
exhibiting the same fold change direction (positive or negative) si‐
multaneously in the two AVIR_vs_VIR comparisons and with fold 
change > 2 and (b) genes tagged by at least two probes exhibiting 
the features listed in 1). We then validated by qPCR the CNVs result‐
ing from the filtering pipeline. Amplification and detection were per‐
formed on an Agilent AriaMX qPCR system. Primers used for qPCR 
analyses were designed using Primer3 online (Untergasser et al., 
2012) and are listed in Table S1. Reactions were in a final volume 
of 15 μl containing 7.5 μl of qPCR MasterMix Plus For SYBRGreen 
I No Rox (Eurogentec), 0.45 μl 10 μM of each primer and 15 ng of 
DNA template. PCR conditions were as follows: 95°C for 10 min, fol‐
lowed by 40 cycles of 95°C for 15 s, 60°C for 30 s. At the end of 
the program, a melting curve (from 60 to 95°C, read every 0.5°C) 
was determined to ensure that only single products were formed. 
For each nematode NIL, two technical replicates and three biological 
replicates were assayed. The copy number of each CNV was further 
normalized against the GAPDH housekeeping gene, a control gene 
that did not vary in copy number in the M. incognita genome (Kozera 
& Rapacz, 2013). Finally, the relative copy number fold changes be‐
tween avirulent and virulent NILs were compared according to the 
2−∆∆Ct method (Livak & Schmittgen, 2001), based on Ct values for 
the target genes and GAPDH for both the avirulent and virulent 
samples. Values of p < 0.05 after FDR correction were considered as 
statistically significant.

3  | RESULTS

3.1 | Phenotypic and genetic characterization of 
nematode NILs after experimental evolution

The experimental evolution system was originally set up in the labo‐
ratory in 1995 and constantly maintained under the same controlled 
conditions since that time. Considering that about 45 days are re‐
quired at 20°C for M. incognita to complete its life cycle (Ploeg & 
Maris, 1999), the two pairs of avirulent vs. virulent NILs from Kursk 
and Morelos used in this study have independently evolved for 160 
successive generations on the susceptible and resistant tomato cv. 
Saint Pierre and Piersol, respectively. At the end of the process, the 
phenotype of the four NILs was characterized on the resistant to‐
mato. As expected, both avirulent NILs were controlled by the Mi‐1.2 
resistant cv. Piersol; that is, no egg masses were observed on the root 
systems of inoculated plants. Conversely, the virulent NILs exhib‐
ited a high reproduction rate on the resistant tomatoes (average egg 
mass number per root system = 20.85 ± 2.33 and 23.08 ± 2.47 for 
the virulent NILs from Kursk and Morelos, respectively; Figure 1b). 
This result indicates that the evolution towards nematode virulence 
was indeed successful, virulence being defined here as the ability 
of the parasite to reproduce (i.e., for a M.  incognita given female to 
produce one egg mass) on a resistant cultivar.

In order to estimate whether the two avirulent lines used as 
the ancestors of the two virulent lines are independent or share a 
recent evolutionary history, we performed a phylogenetic analysis 

http://meloidogyne.inra.fr
http://meloidogyne.inra.fr
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of the two avirulent/virulent pairs of M. incognita lines from Kursk 
and Morelos. For that purpose, we sequenced the four genomes 
in question, which led to 24 to 49 millions 75‐bp single reads per 
library, respectively. After alignment against the M. incognita ref‐
erence genome, the SNPs in coding regions were identified, con‐
catenated and used as markers to estimate the phylogeny. The 
topology of the obtained tree clearly shows that the two original 
lines from Kursk and Morelos are independent (Figure S1), which 
in turn supports the independent origin of the virulent (adapted) 
strains, and thus adaptive parallel evolution of the virulence phe‐
notype. Overall, the observed, unambiguous phenotypic and 
genotypic differentiation between avirulent and virulent NILs 
confirmed that these lineages are thus a biological material of 
choice for the aCGH strategy performed here.

3.2 | Detection of gene CNVs associated with 
nematode (a)virulence

Following normalization of the hybridization signals, the average 
log2 ratio of each of the 60‐bp 173,539 probes was computed. All 
together, these probes covered 11.6% and 45.8% of the M. incognita 
V1 genome (i.e., 86 Mb; Abad et al., 2008) and predicted protein‐
coding regions, respectively. About 75% of the sequences from the 
avirulent and virulent NILs from Kursk and Morelos corresponding 
to these probes exhibited no variation when aligned against the 
M. incognita reference genome (Table S2). We identified a total of 
2,400 and 1,463 probes exhibiting CNVs between avirulent and 
virulent NILs from Kursk and Morelos, respectively (Tables S3 and 
S4). Probes exhibiting a positive FC ratio have higher copy number 
in the avirulent strain vs. the virulent strain and represented 74.3% 
and 80.8% of the total number of probes exhibiting CNVs for the 
NILs from Kursk and Morelos, respectively. Overall, 776 probes with 
CNV between avirulent and virulent nematodes were shared by 
NILs from Morelos and Kursk, 92.8% of which exhibited a positive 
FC ratio (Figure 2; Table S5). Notably, alignment of the Illumina reads 
of the virulent/avirulent Morelos and Kursk isolates on the M. incog‐
nita reference genome revealed no SNP at all in 91.4% of these 776 
probes (Table S5). This confirmed that the probes designed on the 
Morelos reference genome should be able to detect CNVs on Kursk 
with a relatively similar sensitivity. The 776 probes correspond to 
184 genes in the M. incognita genome. Only these common, differen‐
tial probes/genes were taken into account for further analysis.

When scanned for InterPro domains, 103 out of the 184 (~56%) 
genes varying in copy numbers in avirulent vs. virulent NILs were 
found to harbour at least one known domain and were further as‐
signed corresponding Gene Ontology (GO) terms. Overall, Cellular 
Component, Molecular Function and Biological Process GO terms 
could be assigned to 26, 70 and 99 genes, respectively (Figure S2). We 
identified 18 and 4 significantly enriched GO terms, in the Molecular 
Function and Biological Process ontologies, respectively, in the 184 
genes showing variations in copy numbers. No Cellular Component 
GO term was significantly enriched (Table S6). Interestingly, 6 of the 
18 enriched Molecular Function terms were related to peptidase 

activity and this is further highlighted by the “proteolysis” term also 
significantly enriched in the Biological Process Ontology.

In addition, the comparison of the 184 genes exhibiting CNVs 
to > 100 characterized M. incognita putative effectors (Nguyen 
et al., 2018) revealed three positive matches: a metallopeptidase 
(Minc00108), a gene of unknown function expressed in the subven‐
tral glands (Minc13292) and a gene of unknown function expressed 
in the amphids (Minc00158).

3.3 | Distribution of genes affected by CNVs in the 
nematode genome

Further analysis of the 184 genes varying in terms of copy number 
in both couples of avirulent vs. virulent NILs revealed that they are 
distributed on 33 super‐contigs, ranging from one to 23 genes per 
super‐contig (Figure 3a). The rate of distribution appeared highly 
variable, with more than half of the genes (51.1%) present on five 
super‐contigs only, while 15 super‐contigs harbour one single gene 
affected by CNVs. In addition, no significant correlation was ob‐
served between the occurrence of genes affected by CNVs and 
the super‐contig length (R2 = 0.38686; Figure 3b). Moreover, 142 of 
these 184 genes (77.2%) are organized in 36 clusters ranging from 
two to 18 adjacent genes. Figure 3c illustrates the genomic organiza‐
tion of the two largest clusters on super‐contigs ctg217 and ctg202 
harbouring 18 and 16 adjacent genes affected by CNVs, respec‐
tively. Altogether, these data indicate that the distribution of genes 
affected by CNVs is not uniform in the nematode genome.

3.4 | Cross‐validation of CNVs based on aCGH and 
qPCR experiments

When applying further pruning in the pipeline selection based on 
(a) probes varying in the same direction in the two AVIR_vs_VIR 

F I G U R E  2  Venn diagram illustrating the overlap between 
probes with |fold change (FC)| > 1.5 in the CGH comparison 
between Meloidogyne incognita avirulent (AVIR) and virulent (VIR) 
near‐isogenic lines from Kursk and Morelos
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comparisons and with fold change > 2 and (b) genes tagged by at 
least two probes exhibiting these features, a short list of 33 highly 
supported genes affected by CNV was retrieved from the previous 
list of 184 genes differential between avirulent and virulent NILs 
(Table 1). Notably, sequence variation in probes targeting these 33 
genes was detected for one single gene (Minc07328; Table S5). In 
both pairs of NILs, fold change values indicated a reduced copy 
number in virulent nematodes compared to their avirulent coun‐
terpart for all the 33 genes considered (Figure 4). In addition to 
eliminate false positives that may have resulted from poor hybridi‐
zation conditions, the 33 CNVs were further cross‐validated by 
qPCR on genomic DNA from the two pairs of avirulent/virulent 
NILs. For 28 of these genes, unambiguous amplification signals 
were observed, while we were unable to define suitable amplifica‐
tion conditions for the remaining genes. Overall, a clear correla‐
tion was observed between CNVs obtained by aCGH and qPCR, 
with 20/28 genes (i.e., 71%) exhibiting the same pattern of varia‐
tion in the two pairs of NILs (Table 1; Figure S3). For five additional 

genes (i.e., 18%), qPCR validation was confirmed for one pair of 
NILs only. Among these 20 gene families supported by both aCGH 
and qPCR analyses, pioneer genes, genes with housekeeping 
functions (carbonic anhydrase, chaperone, GPCR family) as well 
as genes encoding protease activity (peptidase S16, Lon protease 
and peptidase C1A) and gene with strong homology with a trans‐
posase were identified as significantly affected by CNV.

4  | DISCUSSION

In this study, we used a genomewide aCGH strategy to evaluate 
variations in gene copy numbers between genotypes of the par‐
thenogenetic plant‐parasitic nematode M. incognita resulting from 
experimental evolution on a susceptible or resistant host plant, 
respectively. In our experimental evolution protocol, the selection 
environment was highly controlled, and thus, we expected that simi‐
lar molecular evolution mechanisms would take place to generate 

F I G U R E  3  Distribution of CNVs and genes exhibiting CNVs in the Meloidogyne incognita genome. (a) Number of genes exhibiting CNVs 
according to their super‐contig position. (b) Relationship between the number of genes exhibiting CNVs and super‐contig size. (c) Genomic 
organization of genes exhibiting CNVs in two super‐contigs of Meloidogyne incognita genome, super‐contig 217 (MiV1ctg217) and super‐
contig 202 (MiV1ctg202) 

(a)

(c)

(b)
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similar phenotypes (in terms of virulence) in independent lineages 
(Bailey & Bataillon, 2016). In that respect, we were primarily inter‐
ested in identifying CNVs differentiated between avirulent vs. viru‐
lent nematodes that were shared by the two pairs of NILs analysed, 
that is, that resulted from the adaptive evolution of the same trait 
(i.e., virulence) in independent lineages according to parallel evolu‐
tion. Indeed, this could provide evidence of positive selection for 
the trait of interest, considering that genetic drift alone is unlikely 
to produce such concerted changes in independent lineages (Hirase, 
Ozaki, & Iwasaki, 2014; Rundle, Nagel, Boughman, & Schluter, 2000).

4.1 | Gene copy number variation is associated with 
nematode adaptation to plant resistance

The comprehensive genomewide landscape of gene CNVs asso‐
ciated with the virulence of the nematode resulted in a set of 184 
genes differentially affected by CNV between avirulent vs. virulent 
NILs. Previous observations highlighted the occurrence of massive 
duplications that led to the formation of large multigene families 
in the genome of M. incognita, as illustrated for, for example, genes 
encoding cell wall‐degrading enzymes (Danchin et al., 2010) or pro‐
teases (Castagnone‐Sereno, Deleury, Danchin, Perfus‐Barbeoch, & 
Abad, 2011). Indeed, it is commonly accepted that the genome of 
parthenogenetic RKNs can tolerate drastic structural variations, 
for example, various states of aneuploidy (Triantaphyllou, 1985), or 
series of synteny breakpoints within the different scaffolds of the 
genome assembly (Blanc‐Mathieu et al., 2017; Castagnone‐Sereno & 
Danchin, 2014), that may be favoured by a relaxed selection pres‐
sure for homologous chromosome pairing in the absence of meiosis. 
More generally, high rates of gene copy number variations have been 
documented in various other asexual organisms such as trypano‐
soma, the ciliate Chilodonella uncinta, the water flea Daphnia pulex or 
aphids. These observations support the hypothesis that the genomes 
of asexual species could presumably accumulate more CNVs than 
sexual ones (Colbourne et al., 2011; Duvaux et al., 2015; Minning, 
Weatherly, Flibotte, & Tarleton, 2011; Spring, Pham, & Zufall, 2013; 
The International Aphid Genomics Consortium 2010). The new find‐
ing here is that the same CNVs can occur de novo in parallel in the ge‐
nome of independent M. incognita NILs exhibiting virulence against 
the Mi‐1.2 tomato resistance gene, that is, are associated with the 
adaptive response to the same environmental challenge.

4.2 | Genes affected by CNVs are not uniformly 
distributed in the nematode genome

More than half (51.1%) of the genes affected by CNVs in both couples 
of avirulent vs. virulent NILs were distributed in a limited number of 
super‐contigs of the genome (33 out of 2,995). In addition, most of 
these genes are organized in clusters, some of them containing up 
to 18 adjacent genes. This CNV distribution throughout the M. in‐
cognita genome in a nonrandom manner suggests the occurrence of 
genomic regions more prone to evolve in response to the selection 
pressure of the host resistance. Such highly plastic genomic regions 

where mutations leading to copy number differences between indi‐
viduals occur more frequently than expected, known as CNV hot‐
spots, have already been documented in various eukaryotes, from 
either the animal or plant kingdom (Gokcumen et al., 2011; Jiang 
et al., 2014; Zmienko, Samelak, Kozlowski, & Figlerowicz, 2014).

Gene Ontology analysis of genes affected by CNVs identified 
several overrepresented functions playing a putative role in RKN par‐
asitism. These functions include cell redox homeostasis (involved in 
detoxification of the environment), signal transduction, binding, pepti‐
dase activity (involved in the degradation of host tissues) and transport 
activity (Gahoi & Gautam, 2017; Petitot et al., 2016; Shukla et al., 2018). 
The overabundance of these functional categories may suggest a direct 
role of many of the identified CNVs in the ability of M. incognita to infect 
resistant plants. However, it could also indicate that the corresponding 
genes are simply under relaxed conditions of purifying selection (i.e., 
that additional copies of these genes are not deleterious, and their se‐
lective removal by purifying selection is not very active) and thus can 
better tolerate copy number fluctuations compared to other functions.

4.3 | Gene copy loss events in virulent genotypes

CNVs can result from different types of structural variations, such as 
deletions, translocations, inversions, tandem duplications and novel 
insertions (Hastings, Lupski, Rosenberg, & Ira, 2009). Among the 776 
CGH probes exhibiting CNVs 92.8% had positive FC ratio indicating 
a higher copy number in the avirulent isolate vs. the virulent iso‐
late (i.e., loss in the derived virulent isolates). From an evolutionary 
point of view, such a prevalence of gene copy losses may seem quite 
surprising, as deletions are expected to be less frequent than dupli‐
cations, because they should be eliminated by purifying selection 
when they result in a loss of function (Locke et al., 2006).

Several genes involved in pathogenicity in various plant patho‐
systems were shown to vary significantly in copy numbers between 
avirulent and virulent NILs. Three independent genes encoding pep‐
tidase S16 (Lon protease) were identified as significantly affected 
by CNV, and this enzyme is involved in pathogenicity in the bacteria 
Pseudomonas syringae (Lan, Deng, Xiao, Zhou, & Tang, 2007; Zhou 
et al., 2016) and the fungus Magnaporthe oryzae (Li et al., 2015). A 
gene encoding a peptidase belonging to the C1 family (i.e., C1A; pa‐
pain) also exhibited CNV supported by both aCGH and qPCR analy‐
ses, and this protease family is thought to be directly related to the 
parasitic aspects of the plant–nematode relationship, for example, 
pathogenicity and/or evasion of primary host plant defence systems, 
in the burrowing nematode Radopholus similis (Wang et al., 2016) 
and in M. incognita (Neveu, Abad, & Castagnone‐Sereno, 2003a; 
Shingles, Lilley, Atkinson, & Urwin, 2007). A third gene of particular 
interest showed strong homology with a transposase of M. javanica, 
a RKN species closely related to M. incognita. Noticeably, cDNA‐
AFLP analysis of two M. javanica NILs, avirulent or virulent to Mi‐1.2 
resistant tomatoes, allowed the characterization of Cg‐1, a member 
of a small gene family with one or more copies missing in the virulent 
isolate compared with the avirulent isolate, and required for nem‐
atode virulence (Gleason, Liu, & Williamson, 2008). Further work 
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demonstrated that the Cg‐1 gene lies within a member of a novel 
transposable element family, Tm1, from the Mutator transposon su‐
perfamily (Gross & Williamson, 2011).

The qPCR validation of a subset of genes of interest largely 
confirmed the aCGH initial result, that is, gene copies losses in the 
virulent lines. This outcome is coherent with previous experimental 
data obtained at the individual gene level in some plant–nematode 
interactions. For example, in a previous comparative AFLP study, 
the map‐1 gene family, encoding expansin‐like proteins, presented 
CNVs between M. incognita avirulent and virulent NILs (Castagnone‐
Sereno, Semblat, & Castagnone, 2009; Semblat et al., 2001). In 
particular, some members of the family (i.e., map‐1.2 and map‐1.3) 
were deleted in the virulent NILs (Castagnone‐Sereno et al., 2009; 

Semblat et al., 2001). In the same way, the HgSLP‐1 gene encoding 
a SNARE‐like protein exhibited reduced copy number in virulent 
populations of the soybean cyst nematode, Heterodera glycines, that 
were able to overcome the Rhg1 resistance gene (Bekal et al., 2015). 
In line with these observations, the present work, conducted at the 
whole‐genome scale, revealed an unprecedented level of magnitude 
of gene copy loss events in virulent genotypes and thus supports 
the view that gene loss could be a common class of adaptive genetic 
change in response to the stress generated by host resistance in 
plant‐parasitic nematodes. Recent studies have highlighted the im‐
portance of adaptive gene losses as a prevalent evolutionary force 
that affects organisms from all life kingdoms and contributes to mor‐
phological, physiological and metabolic adaptations to changes in 

F I G U R E  4  Average fold changes of the 33 genes exhibiting differential copy number variations (CNVs) in Meloidogyne incognita avirulent 
and virulent near‐isogenic lines from Kursk and Morelos, as selected by a custom, highly stringent CNV‐calling pipeline (see Materials and 
methods for details)



     |  11CASTAGNONE‐SERENO et al.

environmental conditions (e.g., Casewell, 2016; Sharma et al., 2018). 
From a mechanistic point of view, the loss of a given gene may result 
from either the drastic loss of a DNA fragment (e.g., following the 
mobilization of a transposable element), or the slow, iterative accu‐
mulation of mutations leading to a final loss of function (e.g., during 
pseudogenization). Although very documented in unicellular organ‐
isms (Hottes et al., 2013), the role of gene loss as a major mechanism 
of adaptive evolution might have been underestimated, especially in 
multicellular organisms (Albalat & Cañestro, 2016). From this point 
of view, our results here further illustrate this hypothesis in the case 
of a metazoan parasite.

5  | CONCLUSION

In conclusion, our findings allowed the characterization of genes 
exhibiting CNV that reflect genomic variations in the parthenoge‐
netic nematode M. incognita in response to the breaking down of 
host resistance. These variations in gene copy numbers (mainly gene 
losses) might explain the differential capacity of virulent and aviru‐
lent M. incognita NILs to parasitize resistant plants, respectively. 
However, further functional investigation of these candidate genes 
will be needed to better understand the impact of CNV on M. in‐
cognita adaptation to plant resistance. This study provides a new 
catalogue of genes to be functionally tested in the future for their 
implication in the recognition of nematodes by plant defence sys‐
tems. More generally, this suggests an important role of CNV in the 
adaptive evolution of parthenogenetic animals that would deserve 
to be investigated in other models.
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