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1  | INTRODUCTION

For over a century, the paradigm has been that the lack of recombi‐
nation associated with asexual reproduction should reduce additive 

genetic variance and produce clonal progenies, thus resulting in poor 
capacities to generate new combination of genotypes (Crow, 1992; 
Edhan, Hellman, & Sherill‐Rofe, 2017; Song, Scheu, & Drossel, 2012). 
In this context, adaptation to changing environmental conditions 
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Abstract
Adaptation	to	changing	environmental	conditions	represents	a	challenge	to	parthe‐
nogenetic organisms, and until now, how phenotypic variants are generated in clones 
in response to the selection pressure of their environment remains poorly known. 
The obligatory parthenogenetic root‐knot nematode species Meloidogyne incognita 
has a worldwide distribution and is the most devastating plant‐parasitic nematode. 
Despite its asexual reproduction, this species exhibits an unexpected capacity of ad‐
aptation to environmental constraints, for example, resistant hosts. Here, we used a 
genomewide	comparative	hybridization	strategy	to	evaluate	variations	in	gene	copy	
numbers between genotypes of M. incognita resulting from two parallel experimental 
evolution assays on a susceptible vs. resistant host plant. We detected gene copy 
number	variations	(CNVs)	associated	with	the	ability	of	the	nematodes	to	overcome	
resistance of the host plant, and this genetic variation may reflect an adaptive re‐
sponse	 to	 host	 resistance	 in	 this	 parthenogenetic	 species.	 The	 CNV	 distribution	
throughout the nematode genome is not random and suggests the occurrence of 
genomic regions more prone to undergo duplications and losses in response to the 
selection pressure of the host resistance. Furthermore, our analysis revealed an out‐
standing level of gene loss events in nematode genotypes that have overcome the 
resistance. Overall, our results support the view that gene loss could be a common 
class of adaptive genetic mechanism in response to a challenging new biotic environ‐
ment in clonal animals.
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represents a challenge to parthenogenetic organisms. However, ev‐
idence collected over the last decade indicates a considerable in‐
traclonal variation in many asexually reproducing eukaryotic animals 
(e.g., Badaeva, Malysheva, Korchagin, & Ryskov, 2008; Fontaneto, 
Kaya, Herniou, & Barraclough, 2009; Monti, Mandrioli, Rivi, & 
Manicardi, 2012) and raises question about the very notion of clone 
(see Loxdale, 2009 for review). Moreover, artificial selection studies 
under laboratory conditions showed that populations reproducing 
by obligate parthenogenesis are able to rapidly respond to strong 
selective constraints such as abiotic stress or thermal adaptation 
(Doroszuk,	Wojewodzic,	&	Kammenga,	2006;	Lombardo	&	Elkinton,	
2017;	Robin,	Andanson,	Saint‐Jean,	Fabreguettes,	&	Dutech,	2017).

In the case of plant–parasite interactions, another corpus of 
studies illustrated the adaptation of various asexual species to their 
hosts,	for	example,	in	aphids	(Agarwala	&	Choudhuri,	2014;	Loxdale,	
2008) or in fungi (de Jonge et al., 2013; Seidl & Thomma, 2014). 
However, it remains enigmatic how phenotypic variants are gener‐
ated in these a priori clonal populations that are known to respond at 
least partially to selection, including changes in the host plant when 
plant parasites/pathogens are considered. The root‐knot nematode 
(RKN) Meloidogyne incognita is a plant parasite of worldwide agricul‐
tural importance. It reproduces in an asexual way by obligate par‐
thenogenesis without meiosis (i.e., apomixis), and several hundreds 
of offspring are produced by a single female that form virtually 
clonal populations (Castagnone‐Sereno, Danchin, Perfus‐Barbeoch, 
&	Abad,	2013).	However,	 although	 these	clones	 share	a	priori	 the	
same genetic heritage, they can exhibit phenotypic variations when 
exposed to unfavourable environments, for example, when they are 
in interaction with host plants harbouring resistance genes. Indeed, 
virulent populations (i.e., able to reproduce on resistant plants) have 
been reported in the field (reviewed in Barbary, Djian‐Caporalino, 
Palloix, & Castagnone‐Sereno, 2015). To avoid confusion in termi‐
nology, the term “virulence” as used for the purpose of this study 
will designate the ability of the nematode to overcome host resis‐
tance and successfully establish infection. Experimental studies 
have clearly demonstrated the emergence of virulent specimens 
in the progeny of M. incognita avirulent females and that inheri‐
tance of virulence is not Mendelian (Bost & Triantaphyllou, 1982; 
Castagnone‐Sereno, Wajnberg, Bongiovanni, Leroy, & Dalmasso, 
1994; Jarquin‐Barberena, Dalmasso, De Guiran, & Cardin, 1991). 
Indeed, at the phenotypic level, the proportion of virulent specimens 
in the originally avirulent population increases over generations, but 
never reaches 100% (as should be expected in case of strict asexual 
reproduction and with the exception of the rare escape cases that 
may occur). Some nucleotidic variations have been found between 
avirulent and virulent nematodes resulting from experimental evolu‐
tion	(Neveu,	Jaubert,	Abad,	&	Castagnone‐Sereno,	2003b;	Semblat,	
Rosso,	Hussey,	Abad,	&	Castagnone‐Sereno,	2001).	However,	they	
probably do not represent the only factor that could be responsible 
for the switch from avirulence to virulence, since their distribution 
proved to be random in natural virulent populations (P. Castagnone‐
Sereno, unpublished data). From this perspective, M. incognita thus 
provides an important model for the comprehensive study of the 

various molecular mechanisms that might promote adaptation of 
parthenogenetic animals to environmental changes. In addition, 
the M. incognita genome sequence and annotation have been deci‐
phered	(Abad	et	al.,	2008),	which	reinforces	the	asset	of	this	exper‐
imental system.

In recent years, whole‐genome sequencing has shown that be‐
sides	 point	 mutations,	 copy	 number	 variations	 (CNVs)	 constitute	
another important mechanism of genomic variation submitted to 
selection. This feature has been identified in most model organ‐
isms across the plant or animal kingdom (Brown et al., 2012; Locke 
et	al.,	2015;	Yu	et	al.,	2013;	Zmienko,	Samelak‐Czajka,	Kozlowski,	&	
Figlerowicz,	2016)	and	consists	of	DNA	segments	typically	exceeding	
1 kb that are variable in copy number in comparison with a reference 
genome, share a sequence identity higher than 95% and are dispersed 
throughout	the	genome	(Alkan,	Coe,	&	Eichler,	2011).	CNVs	can	ei‐
ther be inherited from the previous generation or appear de novo 
through duplication/deletion events, and their fixation by drift or 
selection may contribute to the creation of genetic novelty result‐
ing in species adaptation to stressful or novel environments (Katju 
& Bergthorsson, 2013; Kondrashov, 2012). For example, it has been 
shown	that	CNVs	may	lead	to	adaptive	phenotypes	such	as	copper	
resistance	in	yeast	(Hull,	Cruz,	Jack,	&	Houseley,	2017)	or	insecticide	
resistance in the dengue mosquito Aedes aegypti (Faucon et al., 2017).

In	nematodes,	CNVs	have	been	essentially	documented	at	the	ge‐
nome scale in the model species Caenorhabditis elegans. In this model 
nematode,	the	rate	of	CNV	per	gene	and	per	generation	is	two	orders	
of magnitude higher than the spontaneous rate of point mutation per 
coding	nucleotide	 (Lipinski	 et	al.,	 2011).	 In	 addition,	CNV	has	been	
extensively detected in 12 natural populations of C. elegans, affecting 
over 5% of the genes in the genome, thus allowing even very closely 
related strains to be distinguished (Maydan, Lorch, Edgley, Flibotte, 
& Moerman, 2010). Deletions relative to the canonical N2 strain 
appeared more common in these genetically different populations 
than duplications, affecting gene families involved in environmental 
responses	and	innate	immunity	(Maydan	et	al.,	2010).	A	further	inves‐
tigation on experimental C. elegans lineages indicated that multiple 
duplications and deletions can reach intermediate to high frequen‐
cies in independent genotypes, and several lines of evidence suggest 
that some of these changes were adaptive to laboratory conditions 
(Farslow	et	al.,	2015).	Thus,	CNV	likely	represents	an	important,	yet	
incompletely	characterized,	source	of	de	novo	genetic	variation	and	
adaptive potential in many eukaryotes, including parasitic species.

Here,	we	 tested	 the	 hypothesis	 that	 CNV	may	 contribute	 to	
the adaptive capacities of the parthenogenetic RKN Meloidogyne 
incognita, that is, its ability to overcome plant resistance genes. 
For that purpose, we performed an array comparative genomic hy‐
bridization	(aCGH)	analysis	of	two	independent	pairs	of	avirulent	
vs. virulent genotypes (i.e., nonadapted vs. adapted to the host 
resistance, respectively), taking advantage of the parthenogenetic 
reproduction of the nematode to set up near‐isogenic lines (NILs) 
through experimental evolution on susceptible or resistant host 
plants, respectively. This strategy made it possible to draw up a 
comprehensive	genomewide	 landscape	of	gene	CNVs	associated	
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with the virulence of the nematode and resulted in a set of 184 
genes	 differentially	 affected	by	CNV	between	 avirulent	 and	 vir‐
ulent	 NILs.	We	 further	 filtered	 this	 list	 of	 candidate	 CNVs	 and	
identified 33 genes that systematically showed the same highly 
supported changes in copy number across replicates between the 
two pairs of virulent vs. virulent NILs. The fold change values in‐
dicated gene copy losses in virulent nematodes, which were then 
tested by qPCR. This validation step confirmed a subset of 18 
genes	exhibiting	CNVs	conserved	between	two	independent	sets	
of avirulent and virulent lines. To our knowledge, this study rep‐
resents	the	first	genomewide	analysis	of	the	distribution	of	CNVs	
in the genome of a nonmodel nematode and provides new insights 
into the genetic mechanisms that may promote adaptation of a 
parthenogenetic animal to changing environmental conditions.

2  | MATERIALS AND METHODS

2.1 | Nematode avirulent and virulent near‐isogenic 
lines

Experimental evolution was conducted in the laboratory on two 
M. incognita isolates from the living RKN collection of the Institut 
Sophia	Agrobiotech,	both	originally	sampled	in	the	field	and	aviru‐
lent against the tomato Mi‐1.2 resistance gene (Figure 1a). In order 
to ensure that the observed phenotypes were the result of our ex‐
perimental evolution protocol (independently of the genetic back‐
ground of the nematodes), we selected isolates with very different 
geographic origins (Kursk, Russia and Morelos, Mexico, respec‐
tively). In addition, to eliminate any potential within‐population 

F I G U R E  1   Nematode avirulent 
and virulent lines used in this study. (a) 
The experimental evolution procedure 
designed to generate independent pairs of 
Meloidogyne incognita near‐isogenic lines 
avirulent or virulent against the tomato 
Mi‐1.2 resistance gene. (b) Reproduction 
of Meloidogyne incognita avirulent and 
virulent near‐isogenic lines on the 
resistant tomato cv. Piersol

(b)

(a)
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heterogeneity, a line was raised from each field population, start‐
ing from the progeny of a single female carefully dissected from the 
root tissues along with its egg mass, which was then used to rein‐
oculate a tomato plant. Because of the obligatory mitotic, parthe‐
nogenetic mode of reproduction of M. incognita, the second‐stage 
juveniles (J2s) that hatched from each egg mass were considered 
as a clonal line (Castagnone‐Sereno et al., 2013). From this starting 
material, sets of replicated lines were repeatedly inoculated under 
controlled conditions on susceptible (cv. Saint Pierre) or Mi‐1.2‐re‐
sistant (cv. Piersol) tomatoes, according to described experimen‐
tal evolution procedures (Castagnone‐Sereno, Bongiovanni, & 
Wajnberg, 2007; Jarquin‐Barberena et al., 1991). This gave rise to 
two pairs of originally avirulent vs. derived virulent near‐isogenic 
lines (NILs). Due to their apomictic reproduction, these pairs of 
NILs were considered to vary only in their (a) virulence against the 
Mi‐1.2 resistance gene.

2.2 | DNA sequencing, SNP calling and 
phylogenetic analysis

For each of the two pairs of avirulent vs. virulent NILs from 
Kursk	and	Morelos,	DNA	was	extracted	from	eggs	as	described	in	
Perfus‐Barbeoch et al. (2014). In summary, eggs were grinded for 
5	min	in	a	Dounce	homogenizer	to	access	nuclei.	Nuclei	were	puri‐
fied by 20‐min centrifugation at 7800 g and incubated at 37°C for 
5 min with 1 μl	MNase	(15	U).	Digested	DNA	was	extracted	with	
phenol/chloroform, precipitated with isoamyl alcohol, washed 
with 70% ethanol and suspended in 40 μl qPCR grade water. 
To generate the 4 libraries to be sequenced, MicroPlex Library 
Preparation™ kit (Diagenode) was used. Each barcoded library 
was	 then	 quantified	 by	 qPCR	 (KAPA	 Library	Quantification	 Kit,	
KAPA	Biosystems)	and	standardized	to	4	nM	before	being	pooled	
altogether.	Illumina	sequencing	was	performed	at	UCAGenomiX‐
IPMC	platform	(Sophia	Antipolis,	France)	on	NextSeq	500	to	gen‐
erate 75‐bp single reads.

After	 the	 filtering	 of	 low‐quality	 bases,	 each	 library	 was	
aligned to the M. incognita	reference	genome	with	BWA	(Li,	2013)	
and alignments with mapping quality score <20 were removed 
with	 SAMtools	 (Li	 et	al.,	 2009).	We	 used	 the	 FreeBayes	 variant	
detection tool (Garrison & Marth, 2012) to call SNPs and small‐
scale insertions/deletions, incorporating all the library alignment 
files	 simultaneously,	 and	 produced	 a	 variant	 call	 file	 (VCF).	We	
filtered	 the	 resulting	 VCF	 file	with	 the	 vcffilter	 function	 of	 vc‐
flib (Garrison, 2018), retaining the positions that had more than 
20 Phred‐scaled probability and a coverage depth > 10. Finally, 
we used SnpEff (Cingolani et al., 2012) to annotate variants at 
coding regions. SNPs were concatenated into a supermatrix that 
was	 used	 as	 input	 to	 IQ‐TREE	 (Nguyen,	 Schmidt,	 von	Haeseler,	
& Minh, 2015) to estimate the phylogeny under maximum‐likeli‐
hood	criterion	using	the	GTR+ASC+G	model.	Bootstrap	was	used	
to	 assess	 branch	 support.	 The	 resulting	 tree	 was	 visualized	 in	
FigTree (Rambaut, 2018).

2.3 | Evaluation of the ability to reproduce on 
resistant tomato

At	 the	 end	 of	 the	 selection	 procedure,	 the	 two	 pairs	 of	 avirulent	
vs. virulent NILs from Kursk and Morelos were compared for their 
ability to reproduce on resistant tomatoes. Experiments were con‐
ducted in a climatic chamber maintained at 22°C (±2°C) with a 14‐
hr light cycle. Mi‐1.2‐resistant Piersol tomato seedlings were grown 
individually	 in	 50‐ml	 plastic	 tubes	 containing	 a	 steam‐sterilized	
sandy soil, and 4‐6 true leaves plants were inoculated with a cali‐
brated water suspension of 25 J2s, in order to avoid any influence of 
density‐dependent effects on nematode reproduction parameters. 
Seven weeks after inoculation, the root systems of 10 to 13 plants 
for each NIL were gently washed free from soil in tap water, im‐
mersed in cold eosin yellow (0.1 g/L water) and stirred for 30 min to 
stain nematode egg masses. Numbers of egg masses per root system 
were then counted under a magnifying glass. Preplanned compari‐
sons	between	means	were	done	with	Student's	t least significant dif‐
ference test at p	=	0.01.	All	computations	were	done	using	analysis	
of variance models implemented in the PROC GLM procedures of 
the	sas/stat	package	(SAS	Institute	Inc.,	1990).

2.4 | Oligonucleotide array CGH design

A	 4	×	180	K	 custom	CGH	 array	 (Agilent	 Technologies)	was	 gener‐
ated based on the 2,995 super‐contigs of the M. incognita	Mi1V1	ref‐
erence	genome	sequence	obtained	from	an	avirulent	isolate	(Abad	
et	al.,	2008).	A	total	of	173,539	probes	of	60‐bp	length,	representing	
a global coverage of ~10.4 Mb, were designed from the 19,212 pro‐
tein‐coding	 genes	 according	 to	Agilent	 probe	design	procedure	 at	
an average rate of ~9 probes/gene (https://earray.chem.agilent.com/
suredesign/). In addition, 380 probes randomly selected from the 
global	set,	10×	replicated,	together	with	3,440	Agilent	Technologies	
control	probes	were	included	for	hybridization	quality	control.

2.5 | DNA isolation, DNA labelling and array 
hybridization

For	each	sample,	genomic	DNA	was	purified	from	~200	μl of nem‐
atode eggs according to a standard phenol/chloroform protocol 
(Sambrook,	Fitsch,	&	Maniatis,	1989)	and	stored	at	−80°C	until	use.	
Quality	of	DNA	was	checked	by	PCR	using	the	Meloidogyne‐specific 
primers MelF and MelR (Tigano, Carneiro, Jeyaprakash, Dickson, & 
Adams,	2005).	Sample	identity	to	the	species	level	was	further	con‐
firmed	using	a	species‐specific	SCAR	marker	as	described	previously	
(Randig, Bongiovanni, Carneiro, & Castagnone‐Sereno, 2002). For 
each	of	the	four	genotypes	tested	(i.e.,	two	geographic	origins	×	two	
(a)virulence phenotypes), three biological replicates were processed.

The	 sample	 preparation	 and	 hybridization	 were	 performed	 as	
specified	by	Agilent	Technologies	on	the	HELIXIO	platform	(Helixio,	
Saint‐Beauzire,	 France).	 Briefly,	 pairs	 of	 test	 (virulent	 NILs)	 and	
reference	 (avirulent	 NILs)	 DNAs	 (500	ng)	 were	 digested	 with	AluI 

https://earray.chem.agilent.com/suredesign/
https://earray.chem.agilent.com/suredesign/


     |  5CASTAGNONE‐SERENO ET Al.

and RsaI and labelled with fluorescent dyes Cy5 and Cy3, respec‐
tively.	Absorbance	was	measured	at	260	nm	(DNA),	550	nm	(Cy3)	or	
650	nm	(Cy5)	to	calculate	the	specific	activity.	Array	cohybridization	
was	 then	performed	at	65°C	 for	24	hr.	After	washing,	arrays	were	
scanned at a 3 μm resolution on the G2505C Microarray Scanner 
and images were processed using the Feature Extraction software v. 
11.5.1.1	(Agilent	Technologies).	Quality	control	reports	with	a	set	of	
evaluation metrics were generated from each of the images to assess 
the	quality	of	the	various	laboratory	steps	(label,	hybridization,	wash,	
scan steps), and only images that showed metrics that are within the 
suggested threshold ranges were considered for further analysis.

2.6 | Data normalization and statistical analysis

Before	CNV	prediction,	intra‐array	normalization	of	the	data	was	
performed using specific algorithms of the Feature Extraction 
software, and the average log2 ratio of each probe (i.e., log2 [cy5 
processed	 signal/cy3	 processed	 signal])	 was	 computed.	 CNVs	
were called as segments with a mean |ratio| > 1.50 (i.e., fold 
change |FC| > 1.50). In order to reduce the number of false posi‐
tives, probes were filtered; that is, only those showing the same 
flag of intensity signal for all the three biological replicates of a 
given nematode genotype were considered for further statistical 
analysis. Comparisons between reference (avirulent) and test (vir‐
ulent) samples were carried out using t tests. To take into account 
the occurrence of false positives, p‐values < 0.05 after FDR cor‐
rection (false discovery rate; Benjamini & Hochberg, 1995) were 
considered statistically significant.

2.7 | Functional characterization of genes affected 
by CNVs

Genes	 corresponding	 to	 probes	 that	were	 affected	 by	 CNVs	were	
retrieved from the M. incognita	 Mi1V1	 genome	 sequence	 (http://
meloidogyne.inra.fr). To determine which functional categories were 
found in these genes, we performed a gene ontology (GO) annotation 
inferred	from	the	InterPro	protein	domains	annotation	using	AmiGO,	
the	GO	Consortium's	annotation	and	ontology	toolkit	(Carbon	et	al.,	
2009). The GO‐slim annotations were split into three ontologies (bio‐
chemical function, cellular component and molecular function). In ad‐
dition,	we	used	a	hypergeometric	test	as	implemented	in	FUNC	v0.4.7	
(Prüfer et al., 2007) to detect enriched GO terms in the genes showing 
significant variation in copy numbers between avirulent and virulent 
genotypes. We considered the GO terms that returned a FDR thresh‐
old	<	0.05	 as	 significantly	 enriched.	 To	 further	 characterize	 these	
genes, we compared them to a list of > 100 M. incognita putative ef‐
fectors (i.e., genes encoding secreted proteins that mediate interac‐
tions with the host), as recently reviewed in Nguyen et al. (2018).

2.8 | Validation of CNVs by qPCR

In order to select a short list of genes systematically affected 
by	 CNVs,	 an	 additional	 custom	 CNV‐calling	 pipeline	 with	 higher	

stringency was designed with the following parameters: (a) probes 
exhibiting the same fold change direction (positive or negative) si‐
multaneously	 in	 the	 two	 AVIR_vs_VIR	 comparisons	 and	 with	 fold	
change > 2 and (b) genes tagged by at least two probes exhibiting 
the	features	listed	in	1).	We	then	validated	by	qPCR	the	CNVs	result‐
ing	from	the	filtering	pipeline.	Amplification	and	detection	were	per‐
formed	on	an	Agilent	AriaMX	qPCR	system.	Primers	used	for	qPCR	
analyses	 were	 designed	 using	 Primer3	 online	 (Untergasser	 et	al.,	
2012) and are listed in Table S1. Reactions were in a final volume 
of 15 μl containing 7.5 μl of qPCR MasterMix Plus For SYBRGreen 
I No Rox (Eurogentec), 0.45 μl 10 μM of each primer and 15 ng of 
DNA	template.	PCR	conditions	were	as	follows:	95°C	for	10	min,	fol‐
lowed	by	40	cycles	of	95°C	 for	15	s,	60°C	 for	30	s.	At	 the	end	of	
the program, a melting curve (from 60 to 95°C, read every 0.5°C) 
was determined to ensure that only single products were formed. 
For each nematode NIL, two technical replicates and three biological 
replicates	were	assayed.	The	copy	number	of	each	CNV	was	further	
normalized	against	the	GAPDH	housekeeping	gene,	a	control	gene	
that did not vary in copy number in the M. incognita	genome	(Kozera	
&	Rapacz,	2013).	Finally,	the	relative	copy	number	fold	changes	be‐
tween avirulent and virulent NILs were compared according to the 
2−∆∆Ct method (Livak & Schmittgen, 2001), based on Ct values for 
the	 target	 genes	 and	 GAPDH	 for	 both	 the	 avirulent	 and	 virulent	
samples.	Values	of	p < 0.05 after FDR correction were considered as 
statistically significant.

3  | RESULTS

3.1 | Phenotypic and genetic characterization of 
nematode NILs after experimental evolution

The experimental evolution system was originally set up in the labo‐
ratory in 1995 and constantly maintained under the same controlled 
conditions since that time. Considering that about 45 days are re‐
quired at 20°C for M. incognita to complete its life cycle (Ploeg & 
Maris, 1999), the two pairs of avirulent vs. virulent NILs from Kursk 
and Morelos used in this study have independently evolved for 160 
successive generations on the susceptible and resistant tomato cv. 
Saint	Pierre	and	Piersol,	respectively.	At	the	end	of	the	process,	the	
phenotype	of	the	four	NILs	was	characterized	on	the	resistant	to‐
mato.	As	expected,	both	avirulent	NILs	were	controlled	by	the	Mi‐1.2 
resistant cv. Piersol; that is, no egg masses were observed on the root 
systems of inoculated plants. Conversely, the virulent NILs exhib‐
ited a high reproduction rate on the resistant tomatoes (average egg 
mass number per root system = 20.85 ± 2.33 and 23.08 ± 2.47 for 
the virulent NILs from Kursk and Morelos, respectively; Figure 1b). 
This result indicates that the evolution towards nematode virulence 
was indeed successful, virulence being defined here as the ability 
of the parasite to reproduce (i.e., for a M.  incognita given female to 
produce one egg mass) on a resistant cultivar.

In order to estimate whether the two avirulent lines used as 
the ancestors of the two virulent lines are independent or share a 
recent evolutionary history, we performed a phylogenetic analysis 

http://meloidogyne.inra.fr
http://meloidogyne.inra.fr
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of the two avirulent/virulent pairs of M. incognita lines from Kursk 
and Morelos. For that purpose, we sequenced the four genomes 
in question, which led to 24 to 49 millions 75‐bp single reads per 
library,	respectively.	After	alignment	against	the	M. incognita ref‐
erence genome, the SNPs in coding regions were identified, con‐
catenated and used as markers to estimate the phylogeny. The 
topology of the obtained tree clearly shows that the two original 
lines from Kursk and Morelos are independent (Figure S1), which 
in turn supports the independent origin of the virulent (adapted) 
strains, and thus adaptive parallel evolution of the virulence phe‐
notype. Overall, the observed, unambiguous phenotypic and 
genotypic differentiation between avirulent and virulent NILs 
confirmed that these lineages are thus a biological material of 
choice for the aCGH strategy performed here.

3.2 | Detection of gene CNVs associated with 
nematode (a)virulence

Following	 normalization	 of	 the	 hybridization	 signals,	 the	 average	
log2	ratio	of	each	of	the	60‐bp	173,539	probes	was	computed.	All	
together, these probes covered 11.6% and 45.8% of the M. incognita 
V1	genome	 (i.e.,	 86	Mb;	Abad	 et	al.,	 2008)	 and	predicted	protein‐
coding	regions,	respectively.	About	75%	of	the	sequences	from	the	
avirulent and virulent NILs from Kursk and Morelos corresponding 
to these probes exhibited no variation when aligned against the 
M. incognita reference genome (Table S2). We identified a total of 
2,400	 and	 1,463	 probes	 exhibiting	 CNVs	 between	 avirulent	 and	
virulent NILs from Kursk and Morelos, respectively (Tables S3 and 
S4). Probes exhibiting a positive FC ratio have higher copy number 
in the avirulent strain vs. the virulent strain and represented 74.3% 
and	80.8%	of	 the	 total	number	of	probes	exhibiting	CNVs	 for	 the	
NILs from Kursk and Morelos, respectively. Overall, 776 probes with 
CNV	 between	 avirulent	 and	 virulent	 nematodes	 were	 shared	 by	
NILs from Morelos and Kursk, 92.8% of which exhibited a positive 
FC ratio (Figure 2; Table S5). Notably, alignment of the Illumina reads 
of the virulent/avirulent Morelos and Kursk isolates on the M. incog‐
nita reference genome revealed no SNP at all in 91.4% of these 776 
probes (Table S5). This confirmed that the probes designed on the 
Morelos	reference	genome	should	be	able	to	detect	CNVs	on	Kursk	
with a relatively similar sensitivity. The 776 probes correspond to 
184 genes in the M. incognita genome. Only these common, differen‐
tial probes/genes were taken into account for further analysis.

When scanned for InterPro domains, 103 out of the 184 (~56%) 
genes varying in copy numbers in avirulent vs. virulent NILs were 
found to harbour at least one known domain and were further as‐
signed corresponding Gene Ontology (GO) terms. Overall, Cellular 
Component, Molecular Function and Biological Process GO terms 
could be assigned to 26, 70 and 99 genes, respectively (Figure S2). We 
identified 18 and 4 significantly enriched GO terms, in the Molecular 
Function and Biological Process ontologies, respectively, in the 184 
genes showing variations in copy numbers. No Cellular Component 
GO term was significantly enriched (Table S6). Interestingly, 6 of the 
18 enriched Molecular Function terms were related to peptidase 

activity and this is further highlighted by the “proteolysis” term also 
significantly enriched in the Biological Process Ontology.

In	 addition,	 the	 comparison	of	 the	184	genes	 exhibiting	CNVs	
to	>	100	 characterized	 M. incognita putative effectors (Nguyen 
et al., 2018) revealed three positive matches: a metallopeptidase 
(Minc00108), a gene of unknown function expressed in the subven‐
tral glands (Minc13292) and a gene of unknown function expressed 
in the amphids (Minc00158).

3.3 | Distribution of genes affected by CNVs in the 
nematode genome

Further analysis of the 184 genes varying in terms of copy number 
in both couples of avirulent vs. virulent NILs revealed that they are 
distributed on 33 super‐contigs, ranging from one to 23 genes per 
super‐contig (Figure 3a). The rate of distribution appeared highly 
variable, with more than half of the genes (51.1%) present on five 
super‐contigs only, while 15 super‐contigs harbour one single gene 
affected	 by	 CNVs.	 In	 addition,	 no	 significant	 correlation	 was	 ob‐
served	 between	 the	 occurrence	 of	 genes	 affected	 by	 CNVs	 and	
the super‐contig length (R2 = 0.38686; Figure 3b). Moreover, 142 of 
these	184	genes	(77.2%)	are	organized	in	36	clusters	ranging	from	
two	to	18	adjacent	genes.	Figure	3c	illustrates	the	genomic	organiza‐
tion of the two largest clusters on super‐contigs ctg217 and ctg202 
harbouring	 18	 and	 16	 adjacent	 genes	 affected	 by	 CNVs,	 respec‐
tively.	Altogether,	these	data	indicate	that	the	distribution	of	genes	
affected	by	CNVs	is	not	uniform	in	the	nematode	genome.

3.4 | Cross‐validation of CNVs based on aCGH and 
qPCR experiments

When applying further pruning in the pipeline selection based on 
(a)	probes	varying	 in	 the	same	direction	 in	 the	 two	AVIR_vs_VIR	

F I G U R E  2  Venn	diagram	illustrating	the	overlap	between	
probes with |fold change (FC)| > 1.5 in the CGH comparison 
between Meloidogyne incognita	avirulent	(AVIR)	and	virulent	(VIR)	
near‐isogenic lines from Kursk and Morelos
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comparisons and with fold change > 2 and (b) genes tagged by at 
least two probes exhibiting these features, a short list of 33 highly 
supported	genes	affected	by	CNV	was	retrieved	from	the	previous	
list of 184 genes differential between avirulent and virulent NILs 
(Table 1). Notably, sequence variation in probes targeting these 33 
genes was detected for one single gene (Minc07328; Table S5). In 
both pairs of NILs, fold change values indicated a reduced copy 
number in virulent nematodes compared to their avirulent coun‐
terpart for all the 33 genes considered (Figure 4). In addition to 
eliminate false positives that may have resulted from poor hybridi‐
zation	 conditions,	 the	 33	 CNVs	were	 further	 cross‐validated	 by	
qPCR	on	 genomic	DNA	 from	 the	 two	 pairs	 of	 avirulent/virulent	
NILs. For 28 of these genes, unambiguous amplification signals 
were observed, while we were unable to define suitable amplifica‐
tion conditions for the remaining genes. Overall, a clear correla‐
tion	was	observed	between	CNVs	obtained	by	aCGH	and	qPCR,	
with 20/28 genes (i.e., 71%) exhibiting the same pattern of varia‐
tion in the two pairs of NILs (Table 1; Figure S3). For five additional 

genes (i.e., 18%), qPCR validation was confirmed for one pair of 
NILs	only.	Among	these	20	gene	families	supported	by	both	aCGH	
and qPCR analyses, pioneer genes, genes with housekeeping 
functions (carbonic anhydrase, chaperone, GPCR family) as well 
as genes encoding protease activity (peptidase S16, Lon protease 
and	peptidase	C1A)	and	gene	with	strong	homology	with	a	trans‐
posase	were	identified	as	significantly	affected	by	CNV.

4  | DISCUSSION

In this study, we used a genomewide aCGH strategy to evaluate 
variations in gene copy numbers between genotypes of the par‐
thenogenetic plant‐parasitic nematode M. incognita resulting from 
experimental evolution on a susceptible or resistant host plant, 
respectively. In our experimental evolution protocol, the selection 
environment was highly controlled, and thus, we expected that simi‐
lar molecular evolution mechanisms would take place to generate 

F I G U R E  3  Distribution	of	CNVs	and	genes	exhibiting	CNVs	in	the	Meloidogyne incognita	genome.	(a)	Number	of	genes	exhibiting	CNVs	
according	to	their	super‐contig	position.	(b)	Relationship	between	the	number	of	genes	exhibiting	CNVs	and	super‐contig	size.	(c)	Genomic	
organization	of	genes	exhibiting	CNVs	in	two	super‐contigs	of	Meloidogyne incognita	genome,	super‐contig	217	(MiV1ctg217)	and	super‐
contig	202	(MiV1ctg202)	

(a)

(c)

(b)
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similar phenotypes (in terms of virulence) in independent lineages 
(Bailey & Bataillon, 2016). In that respect, we were primarily inter‐
ested	in	identifying	CNVs	differentiated	between	avirulent	vs.	viru‐
lent nematodes that were shared by the two pairs of NILs analysed, 
that is, that resulted from the adaptive evolution of the same trait 
(i.e., virulence) in independent lineages according to parallel evolu‐
tion. Indeed, this could provide evidence of positive selection for 
the trait of interest, considering that genetic drift alone is unlikely 
to produce such concerted changes in independent lineages (Hirase, 
Ozaki,	&	Iwasaki,	2014;	Rundle,	Nagel,	Boughman,	&	Schluter,	2000).

4.1 | Gene copy number variation is associated with 
nematode adaptation to plant resistance

The	 comprehensive	 genomewide	 landscape	 of	 gene	 CNVs	 asso‐
ciated with the virulence of the nematode resulted in a set of 184 
genes	differentially	affected	by	CNV	between	avirulent	vs.	virulent	
NILs. Previous observations highlighted the occurrence of massive 
duplications that led to the formation of large multigene families 
in the genome of M. incognita, as illustrated for, for example, genes 
encoding	cell	wall‐degrading	enzymes	(Danchin	et	al.,	2010)	or	pro‐
teases (Castagnone‐Sereno, Deleury, Danchin, Perfus‐Barbeoch, & 
Abad,	 2011).	 Indeed,	 it	 is	 commonly	 accepted	 that	 the	 genome	of	
parthenogenetic RKNs can tolerate drastic structural variations, 
for example, various states of aneuploidy (Triantaphyllou, 1985), or 
series of synteny breakpoints within the different scaffolds of the 
genome assembly (Blanc‐Mathieu et al., 2017; Castagnone‐Sereno & 
Danchin, 2014), that may be favoured by a relaxed selection pres‐
sure for homologous chromosome pairing in the absence of meiosis. 
More generally, high rates of gene copy number variations have been 
documented in various other asexual organisms such as trypano‐
soma, the ciliate Chilodonella uncinta, the water flea Daphnia pulex or 
aphids. These observations support the hypothesis that the genomes 
of	 asexual	 species	 could	 presumably	 accumulate	more	 CNVs	 than	
sexual ones (Colbourne et al., 2011; Duvaux et al., 2015; Minning, 
Weatherly, Flibotte, & Tarleton, 2011; Spring, Pham, & Zufall, 2013; 
The	International	Aphid	Genomics	Consortium	2010).	The	new	find‐
ing	here	is	that	the	same	CNVs	can	occur	de	novo	in	parallel	in	the	ge‐
nome of independent M. incognita NILs exhibiting virulence against 
the Mi‐1.2 tomato resistance gene, that is, are associated with the 
adaptive response to the same environmental challenge.

4.2 | Genes affected by CNVs are not uniformly 
distributed in the nematode genome

More	than	half	(51.1%)	of	the	genes	affected	by	CNVs	in	both	couples	
of avirulent vs. virulent NILs were distributed in a limited number of 
super‐contigs of the genome (33 out of 2,995). In addition, most of 
these	genes	are	organized	in	clusters,	some	of	them	containing	up	
to	18	adjacent	genes.	This	CNV	distribution	 throughout	 the	M. in‐
cognita genome in a nonrandom manner suggests the occurrence of 
genomic regions more prone to evolve in response to the selection 
pressure of the host resistance. Such highly plastic genomic regions 

where mutations leading to copy number differences between indi‐
viduals	occur	more	 frequently	 than	expected,	known	as	CNV	hot‐
spots, have already been documented in various eukaryotes, from 
either the animal or plant kingdom (Gokcumen et al., 2011; Jiang 
et	al.,	2014;	Zmienko,	Samelak,	Kozlowski,	&	Figlerowicz,	2014).

Gene	 Ontology	 analysis	 of	 genes	 affected	 by	 CNVs	 identified	
several overrepresented functions playing a putative role in RKN par‐
asitism. These functions include cell redox homeostasis (involved in 
detoxification of the environment), signal transduction, binding, pepti‐
dase activity (involved in the degradation of host tissues) and transport 
activity (Gahoi & Gautam, 2017; Petitot et al., 2016; Shukla et al., 2018). 
The overabundance of these functional categories may suggest a direct 
role	of	many	of	the	identified	CNVs	in	the	ability	of	M. incognita to infect 
resistant plants. However, it could also indicate that the corresponding 
genes are simply under relaxed conditions of purifying selection (i.e., 
that additional copies of these genes are not deleterious, and their se‐
lective removal by purifying selection is not very active) and thus can 
better tolerate copy number fluctuations compared to other functions.

4.3 | Gene copy loss events in virulent genotypes

CNVs	can	result	from	different	types	of	structural	variations,	such	as	
deletions, translocations, inversions, tandem duplications and novel 
insertions	(Hastings,	Lupski,	Rosenberg,	&	Ira,	2009).	Among	the	776	
CGH	probes	exhibiting	CNVs	92.8%	had	positive	FC	ratio	indicating	
a higher copy number in the avirulent isolate vs. the virulent iso‐
late (i.e., loss in the derived virulent isolates). From an evolutionary 
point of view, such a prevalence of gene copy losses may seem quite 
surprising, as deletions are expected to be less frequent than dupli‐
cations, because they should be eliminated by purifying selection 
when they result in a loss of function (Locke et al., 2006).

Several genes involved in pathogenicity in various plant patho‐
systems were shown to vary significantly in copy numbers between 
avirulent and virulent NILs. Three independent genes encoding pep‐
tidase S16 (Lon protease) were identified as significantly affected 
by	CNV,	and	this	enzyme	is	involved	in	pathogenicity	in	the	bacteria	
Pseudomonas syringae	 (Lan,	Deng,	Xiao,	Zhou,	&	Tang,	2007;	Zhou	
et al., 2016) and the fungus Magnaporthe oryzae	 (Li	et	al.,	2015).	A	
gene	encoding	a	peptidase	belonging	to	the	C1	family	(i.e.,	C1A;	pa‐
pain)	also	exhibited	CNV	supported	by	both	aCGH	and	qPCR	analy‐
ses, and this protease family is thought to be directly related to the 
parasitic aspects of the plant–nematode relationship, for example, 
pathogenicity and/or evasion of primary host plant defence systems, 
in the burrowing nematode Radopholus similis (Wang et al., 2016) 
and in M. incognita	 (Neveu,	 Abad,	 &	 Castagnone‐Sereno,	 2003a;	
Shingles,	Lilley,	Atkinson,	&	Urwin,	2007).	A	third	gene	of	particular	
interest showed strong homology with a transposase of M. javanica, 
a RKN species closely related to M. incognita.	 Noticeably,	 cDNA‐
AFLP	analysis	of	two	M. javanica NILs, avirulent or virulent to Mi‐1.2 
resistant	tomatoes,	allowed	the	characterization	of	Cg‐1, a member 
of a small gene family with one or more copies missing in the virulent 
isolate compared with the avirulent isolate, and required for nem‐
atode virulence (Gleason, Liu, & Williamson, 2008). Further work 
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demonstrated that the Cg‐1 gene lies within a member of a novel 
transposable element family, Tm1, from the Mutator transposon su‐
perfamily (Gross & Williamson, 2011).

The qPCR validation of a subset of genes of interest largely 
confirmed the aCGH initial result, that is, gene copies losses in the 
virulent lines. This outcome is coherent with previous experimental 
data obtained at the individual gene level in some plant–nematode 
interactions.	 For	 example,	 in	 a	 previous	 comparative	 AFLP	 study,	
the map‐1 gene family, encoding expansin‐like proteins, presented 
CNVs	between	M. incognita avirulent and virulent NILs (Castagnone‐
Sereno, Semblat, & Castagnone, 2009; Semblat et al., 2001). In 
particular, some members of the family (i.e., map‐1.2 and map‐1.3) 
were deleted in the virulent NILs (Castagnone‐Sereno et al., 2009; 

Semblat et al., 2001). In the same way, the HgSLP‐1 gene encoding 
a	 SNARE‐like	 protein	 exhibited	 reduced	 copy	 number	 in	 virulent	
populations of the soybean cyst nematode, Heterodera glycines, that 
were able to overcome the Rhg1 resistance gene (Bekal et al., 2015). 
In line with these observations, the present work, conducted at the 
whole‐genome scale, revealed an unprecedented level of magnitude 
of gene copy loss events in virulent genotypes and thus supports 
the view that gene loss could be a common class of adaptive genetic 
change in response to the stress generated by host resistance in 
plant‐parasitic nematodes. Recent studies have highlighted the im‐
portance of adaptive gene losses as a prevalent evolutionary force 
that affects organisms from all life kingdoms and contributes to mor‐
phological, physiological and metabolic adaptations to changes in 

F I G U R E  4  Average	fold	changes	of	the	33	genes	exhibiting	differential	copy	number	variations	(CNVs)	in	Meloidogyne incognita avirulent 
and	virulent	near‐isogenic	lines	from	Kursk	and	Morelos,	as	selected	by	a	custom,	highly	stringent	CNV‐calling	pipeline	(see	Materials	and	
methods for details)
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environmental conditions (e.g., Casewell, 2016; Sharma et al., 2018). 
From a mechanistic point of view, the loss of a given gene may result 
from	either	the	drastic	 loss	of	a	DNA	fragment	 (e.g.,	 following	the	
mobilization	of	a	transposable	element),	or	the	slow,	iterative	accu‐
mulation of mutations leading to a final loss of function (e.g., during 
pseudogenization).	Although	very	documented	in	unicellular	organ‐
isms (Hottes et al., 2013), the role of gene loss as a major mechanism 
of adaptive evolution might have been underestimated, especially in 
multicellular	organisms	(Albalat	&	Cañestro,	2016).	From	this	point	
of view, our results here further illustrate this hypothesis in the case 
of	a	metazoan	parasite.

5  | CONCLUSION

In	 conclusion,	 our	 findings	 allowed	 the	 characterization	 of	 genes	
exhibiting	CNV	that	 reflect	genomic	variations	 in	 the	parthenoge‐
netic nematode M. incognita in response to the breaking down of 
host resistance. These variations in gene copy numbers (mainly gene 
losses) might explain the differential capacity of virulent and aviru‐
lent M. incognita	 NILs	 to	 parasitize	 resistant	 plants,	 respectively.	
However, further functional investigation of these candidate genes 
will	 be	needed	 to	better	 understand	 the	 impact	 of	CNV	on	M. in‐
cognita adaptation to plant resistance. This study provides a new 
catalogue of genes to be functionally tested in the future for their 
implication in the recognition of nematodes by plant defence sys‐
tems.	More	generally,	this	suggests	an	important	role	of	CNV	in	the	
adaptive evolution of parthenogenetic animals that would deserve 
to be investigated in other models.
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