Biologie et Modélisation Systèmes dynamiques discrets

M. Bailly-Bechet, très largement inspiré de S . Mousset
Université Claude Bernard Lyon I - France

Document disponible à :
http://pbil.univ-lyon1.fr/members/mbailly

Table des matières

Introduction

Modèles discrets dans \mathbb{R}

Récapitulatifs - Systèmes dynamiques dans \mathbb{R}

Table des matières

Introduction

Modèles discrets dans \mathbb{R}

Récapitulatifs - Systèmes dynamiques dans \mathbb{R}

Modèles continus et modèles discrets

Modèles continus

- Forme $\frac{d n}{d t}=f(n)$
- Équations différentielles ordinaires
- Adaptés aux mesures continues et à l'évolution de phénomènes macroscopiques continus.
- Exemple : espèces à cycle de reproduction non synchronisé et/ou générations chevauchantes (bactéries...).

Modèles discrets

- Forme $n_{t+1}=g\left(n_{t}\right)$
- Suites
- Adaptés aux mesures ponctuelles et à l'évolution de phénomènes discontinus.
- Exemple : espèces à cycle de reproduction synchronisé et ponctuel (plantes annuelles...).

Modèles continus et modèles discrets

Choix d'un type de modèle

Le choix du type de modèle à utiliser devra prendre en compte :

- Le phénomène à modéliser (ex : diffusion à travers une membrane, dynamique d'une population...)
- Des critères biologiques (cycles de vie synchrones ou non)
- Des critères pratiques (dispositif expérimental, type de données récoltées)

Approximation de la solution d'un système continu: méthode d'Euler

$$
\frac{d n}{d t}=f(n)=\lim _{\delta t \rightarrow 0} \frac{\delta n}{\delta t}
$$

On comptant le temps en unités de δt, on obtient

$$
\frac{\delta n}{\delta t} \approx f(n) \quad \Rightarrow \quad n_{t+1}-n_{t} \approx f\left(n_{t}\right) \delta t
$$

Approximation de la solution d'un système continu: méthode d'Euler

La méthode d'Euler consiste à approximer la solution d'une équation différentielle par une suite, en utilisant un pas de temps δt suffisament petit.

$$
n_{t+1}=n_{t}+f\left(n_{t}\right) \delta t
$$

Cette méthode revient à approximer la fonction étudiée, dont on ne connait que la dérivée, par sa tangente sur chaque intervalle de longueur δt.

Application au modèle exponentiel

Modèle continu

$$
\begin{gathered}
\frac{d n}{d t}=\lambda n \\
f(n)=\lambda n \\
n(t)=n_{0} e^{\lambda t}
\end{gathered}
$$

Application au modèle exponentiel

Sans approximation

Application au modèle exponentiel

Légère approximation

Application au modèle exponentiel

Approximation plus importante

Application au modèle exponentiel

Approximation très importante

Table des matières

Introduction

Modèles discrets dans \mathbb{R}

Récapitulatifs - Systèmes dynamiques dans \mathbb{R}

Un modèle historique : la suite de Fibonacci (Liber albaci, 1228)

Fibonacci modèlise l'évolution de l'effectif d'une population de lapins avec les hypothèses suivantes:

- Un couple de lapin adultes produit chaque mois un couple de jeunes lapins.
- Un couple de jeunes lapins est adulte après deux mois.
- Les lapins ne meurent jamais - en latin ca fait cuniculi nunquam morientur

Un modèle historique : Ia suite de Fibonacci (Liber albaci, 1228)

Chaque mois, l'effectif des lapins comprend :

- Les couples de lapins qui étaient présents le mois précédent.
- Les nouveaux-nés qui descendent des couples de lapins adultes. Les lapins adultes sont tous-ceux qui étaient présents deux mois auparavant.
La suite de Fibonacci s'écrit donc :

$$
u_{n}=u_{n-1}+u_{n-2}
$$

La suite de Fibonacci

La suite de Fibonacci

La suite de Fibonacci

Taux d'accroissement

$$
R_{n}=\frac{u_{n}}{u_{n-1}}
$$

La suite de Fibonacci

Taux d'accroissement

$$
\begin{gathered}
R_{n}=\frac{u_{n}}{u_{n-1}} \\
R_{n}=1+\frac{1}{R_{n-1}}
\end{gathered}
$$

S'il existe une limite φ pour R_{n}, elle vérifie

$$
\begin{equation*}
\varphi=1+\frac{1}{\varphi} \quad \Longleftrightarrow \quad \varphi^{2}-\varphi-1=0 \tag{1}
\end{equation*}
$$

La suite de Fibonacci

Taux d'accroissement

$$
\begin{gathered}
R_{n}=\frac{u_{n}}{u_{n-1}} \\
R_{n}=1+\frac{1}{R_{n-1}}
\end{gathered}
$$

S'il existe une limite φ pour R_{n}, elle vérifie

$$
\begin{equation*}
\varphi=1+\frac{1}{\varphi} \quad \Longleftrightarrow \quad \varphi^{2}-\varphi-1=0 \tag{1}
\end{equation*}
$$

L'équation 1 admet deux racines réelles:

$$
\varphi_{1,2}=\frac{1 \pm \sqrt{5}}{2}
$$

II existe une seule racine positive $\varphi=\frac{1+\sqrt{5}}{2} \simeq 1.618$

La suite de Fibonacci
Analyse qualitative des systèmes discrets
Un exemple non biologique
Le modèle logistique discret

La suite de Fibonacci

Taux d'accroissement

Analyse qualitative des systèmes discrets

Points d'équilibre

Soit un modèle discret du type

$$
u_{n+1}=f\left(u_{n}\right)
$$

Un point d'équilibre U^{\star} de ce système est un point qui vérifie

$$
f\left(U^{\star}\right)=U^{\star}
$$

Comme pour les systèmes continus, l'existence d'un point d'équilibre n'implique pas une convergence vers ce point.

Représentation en toile d'araignée (cobweb)

Application à la suite $R_{(n)}$

$$
\begin{aligned}
& R_{n+1}=1+\frac{1}{R_{n}} \\
& y=x \\
& R_{0}=1
\end{aligned}
$$

Stabilité des points d'équilibre

Soit une suite $u_{n}=f\left(u_{n-1}\right)$ admettant un point d'équilibre U^{\star}. On linéarise f au voisinage d'un point d'équilibre U^{\star}.

$$
f\left(U^{\star}+x\right)=f\left(U^{\star}\right)+\left.x \frac{d f}{d u}\right|_{u=U^{\star}}
$$

Si $\exists \epsilon>0\left|\forall x \in \mathbb{R}^{+}<\epsilon,\left|f\left(U^{\star}+x\right)-U^{\star}\right|<|x|\right.$, alors le point d'équilibre U^{\star} est un point d'équilibre stable.

En effet le terme $\left|f\left(U^{\star}+x\right)-U^{\star}\right|$ représente la distance à laquelle le système se trouve de l'équilibre, sachant qu'il en était à distance x au départ.

Stabilité des points d'équilibre

Théorème :

Soit une suite $u_{n}=f\left(u_{n-1}\right)$ admettant un point d'équilibre U^{\star}.

- Si $\left|\frac{d f}{d u}\left(U^{\star}\right)\right|<1$, alors U^{\star} est un point d'équilibre stable.
- Si $\left|\frac{d f}{d u}\left(U^{\star}\right)\right|>1$, alors U^{\star} est un point d'équilibre instable.

Exemple de la suite $u_{n+1}=-\frac{\lambda u_{n}}{1+u_{n}^{2}}(\lambda>0)$

Points d'équilibre

- $f(x)=-\frac{\lambda x}{1+x^{2}}$
- Un seul point d'équilibre

Exemple de la suite $u_{n+1}=-\frac{\lambda u_{n}}{1+u_{n}^{2}}(\lambda>0)$

Points d'équilibre

$>f(x)=-\frac{\lambda x}{1+x^{2}}$

- Un seul point d'équilibre $u^{*}=0$
- $f^{\prime}\left(u^{*}\right)=f^{\prime}(0)=-\lambda$

Exemple de la suite $u_{n+1}=-\frac{\lambda u_{n}}{1+u_{n}^{2}}(\lambda>0)$

Stabilité de $u^{*}=0$
Cas $0<\lambda<1$, avec $u_{0}=0.9 \Rightarrow u^{*}=0$ est stable.

Exemple de la suite $u_{n+1}=-\frac{\lambda u_{n}}{1+u_{n}^{2}}(\lambda>0)$

Stabilité de $u^{*}=0$
Cas $0<\lambda<1$, avec $u_{0}=0.9 \Rightarrow u^{*}=0$ est stable.

Exemple de la suite $u_{n+1}=-\frac{\lambda u_{n}}{1+u_{n}^{2}}(\lambda>0)$

Stabilité de $u^{*}=0$
Cas $1<\lambda$, avec $u_{0}=0.05 \Rightarrow u^{*}=0$ est instable.

Exemple de la suite $u_{n+1}=-\frac{\lambda u_{n}}{1+u_{n}^{2}}(\lambda>0)$

Stabilité de $u^{*}=0$ Cas $1<\lambda$, avec $u_{0}=0.05 \Rightarrow u^{*}=0$ est instable.

Le modèle logistique discret

Équations du modèle

$$
n_{t+1}=n_{t}+r n_{t}\left(1-\frac{n_{t}}{K}\right)
$$

Le modèle logistique discret

Stabilité des points d'équilibre

$$
n^{\star}=n^{\star}+r n^{\star}\left(1-\frac{n^{\star}}{K}\right)
$$

Il existe deux points d'équilibre :

$$
n^{\star}=0
$$

$$
n^{\star}=K
$$

Le modèle logistique discret

Points d'équilibre

$$
\begin{gathered}
n_{t+1}=n_{t}+r n_{t}\left(1-\frac{n_{t}}{K}\right) \\
f(n)=n+r n\left(1-\frac{n}{K}\right) \quad \frac{d f}{d n}=1+r-\frac{2 r n}{K}
\end{gathered}
$$

$$
\begin{aligned}
& n^{\star}=0 \\
& \frac{d f}{d n}(0)=1+r>1 \text { donc } n^{\star}=0 \\
& \text { est un point d'équilibre instable. }
\end{aligned}
$$

$$
\begin{aligned}
& n^{\star}=K \\
& \frac{d f}{d n}(K)=1-r
\end{aligned}
$$

- Si $r<2$ alors $n^{\star}=K$ est un point d'équilibre stable.
- Si $r>2$ alors $n^{\star}=K$ est un point d'équilibre instable.

Le modèle logistique discret

$r<1$

Le modèle logistique discret

$1<r<2$ oscillations amorties

Le modèle logistique discret

$r>2$ cycle limite à deux états

Le modèle logistique discret

$r>2$ cycle limite à quatre états

Le modèle logistique discret

$r>2$ cycle limite à huit états

Le modèle logistique discret

$r>2.692$ chaos déterministe

Le modèle logistique discret

$r>2.692$ chaos déterministe

Les cycles limites

Diagramme des cycles attractifs

Les cycles limites

Diagramme des cycles attractifs (agrandissement 1)

Les cycles limites

Diagramme des cycles attractifs (agrandissement 2)

Le modèle logistique discret

$r>3$ extinction de la population

Table des matières

Introduction

Modèles discrets dans \mathbb{R}

Récapitulatifs - Systèmes dynamiques dans \mathbb{R}

Analyse des systèmes dynamiques

Modèles continus

$$
\frac{d n}{d t}=f(n)
$$

Modèles discrets

$$
n_{t+1}=g\left(n_{t}\right)
$$

- Analyse Quantitative : recherche complète d'une solution $n(t)=h\left(t, n_{0}\right)$
$\left.n_{t}=h\left(t, n_{0}\right)\right)$
- Analyse Qualitative : étude du comportement des solutions.

Points d'équilibre
Stabilité des points d'équilibre
Allure des chroniques

Recherche des points d'équilibre

Les points d'équilibre n^{*} sont des invariants du système.

Modèles continus

$$
\left.\frac{d n}{d t}\right|_{n=n^{*}}=f\left(n^{*}\right)=0
$$

Modèles discrets

$$
n_{t+1}=g\left(n_{t}\right)=n^{*} \Leftrightarrow g\left(n^{*}\right)=n^{*}
$$

Stabilité des points d'équilibre

Systèmes continus

Deux méthodes alternatives pour déterminer la stabilité en x^{*}

$$
\dot{x}=f(x)
$$

Linéarisation au voisinage de x^{*}

$\lambda=f^{\prime}\left(x^{*}\right)$

- $\lambda<0 \Rightarrow x^{*}$ stable
- $\lambda>0 \Rightarrow x^{*}$ instable
- $\lambda=0 \Rightarrow x^{*}$ on ne peut pas conclure

Signe de f

Stabilité des points d'équilibre

Systèmes discrets

Linéarisation au point d'équilibre u^{*}.

$$
u_{n+1}=g\left(u_{n}\right) \quad \lambda=g^{\prime}\left(u^{*}\right)
$$

$|\lambda|=\left|g^{\prime}\left(u^{*}\right)\right|<1 \Rightarrow u^{*}$ stable

$|\lambda|=\left|g^{\prime}\left(u^{*}\right)\right|>1 \Rightarrow u^{*}$ instable

