

THE INTERFACE BETWEEN COMPANIES AND PUBLIC RESEARCH IN SOUTH EASTERN FRANCE

SUPERFACE

SUPEROLEOPHOBIC AND/OR SUPERHYDROPHOBIC SURFACES

DURABILITY MECHANICAL RESISTANCE NON TOXIC VERY HIGH REPELLENCE

KEYWORDS

SUPEROLEOPHOBIC
SUPERHYDROPHOBIC
COATING
SELF-CLEANING
NON-STICK
LOW FLUOR
WITHOUT FLUOR

PARTNERSHIPS

LICENSE AND/OR

R&D COLLABORATION
(POSSIBLE CO-FUNDING)

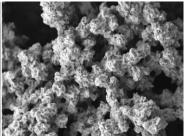
CONTACT

Laurence LACROIX-ORIO Ph.D. Chemistry & e-Health Business Development Manager

Cell +33 (0)7 77 08 59 45 laurence.lacroix@sattse.com www.sattse.com

BACKGROUND


We have developed new compounds and a coating process for preparation of super-phobic surfaces (water and oil). Superhydrophobic surfaces are highly hydrophobic and extremely difficult to wet (Lotus effect). The contact angle of a water droplet exceeds 150° and the contact angle hysteresis is less than 10°.


These kind of micro-nanostructured surfaces have self-cleaning properties nonstick surfaces, and can have applications for the reduction of gasoline consumption for boats and airplanes, frost reduction formation on airfoils and to protect surfaces from dirt

KEY BENEFITS vs. STATE OF THE ART

Available methods require multiple steps in order to manufacture this type of surfaces; they often use high fluorinated compounds. Moreover, these methods have not solved the main issues including durability, mechanical resistance and toxicity induced by high fluor content. Now with our method:

- ✓ Supersurfaces are prepared by electrodeposition of conductive polymers on metallic surfaces with very good adhesion
- ✓ Conductive non fluorinated polymers or polymers with low fluorine content can be used
- ✓ Versatile technique for development of non-wetting surfaces: variable electrochemical parameters and tuning of chemical monomers structure
- ✓ Free of fluorinated polymers and polymers with low fluor content

Examples of surface morphologies obtained with the superface coating

DEVELOPMENT STATUS

The super-phobic surfaces have been obtained at laboratory scale; we are currently up-scaling the process

APPLICATIONS

Fingerprint protection

Non-stick surface
Antifouling paint for boats and automobile (reduced fuel consumption)
Aeronautics (reduced fuel consumption and anti-icing coating)
Protection of solar panels
Coating for textile and biomedical

