Introduction to Government Phonology

I. Introduction

(1) issues in post-SPE phonology
a. lexical vs. post-lexical syllabification
b. derivations vs. constraints
c. internal structure of segments

1. nature of primes: monovalency vs. equipollence
2. relations among primes: arborescence vs. dependency
(2) syllable structure is lexical

GP: Projection Principle KLV 1990:221
syllable structure is defined at the level of lexical representations and remains constant throughout derivation. $==>$ no resyllabification (*..C in Coda vs. ...C-V in Onset).
(3) in support of (2)
a. yers, cf. general intro
b. French Liaison le cafés vs. lez écoles le gran café vs. le grand (h)omme SPE: /..-C/ --> [C] / \#V... C is lexical because its nature cannot be predicted explanation only with lexically present Onset preceding [V]-initial words.
c. vowel-zero alternations in Czech prefixes, Scheer 1996,97

1. +e -e
beze-dný bezá-květný "without bottom/ without flowers"
vze-dmout vz- \mathbf{e}-hled \quad "blow up/ expression (face)"
přede-vším preded-skok "before all/ test-jump ('before-jump')"
roze-dmout rozo-dmýchat "blow up/ fan"
roze-přít rozo-přahat "strut/ remove"
2. +e CC- Roots have alternating CVC- forms
-e CC- Roots never do.
+e Root
two words from the same root
CC- a. b.
BR- ode-brat pf od-bíra
DR- roze-drat inf roz-deru
HR- přede-hra noun NOMsg her
HN - ode-hnat pf od-hánět
PR- ode-prat inf od-peru
SN- beze-sný adj sen
ŠL- vze-šlý adj šel
ZD- pode-zdít inf zed'
DN- beze-dný adj den
-e Root
non-related root
c.
bez-bradý
roz-drobit
od-hrabat
roz-hněvat
vz-pruha
pod-sněžník
roz-šlapat
od-zdola
noun NOMsg noun GENpl
3. +e Roots are always open.
-e Roots are always closed by a third consonant.
C_{2} is stem-final
$\left[\mathrm{C}_{1} \mathrm{C}_{2}-\right] \quad=/ \mathrm{C}_{1} \ldots \mathrm{C}_{2} /$
ode-B R-at
DR- roze-D__R-at
HR- přede-H__R-a
HN- ode-H__N-at
PR- ode-P__R-at
SN- beze-S__N-ý
ŠL- vze-Š__L-ý
ZD- pode-Z__D-ít
DN- beze-D__N-ý
C_{2} is part of the stem-initial cluster

$$
=/ \mathrm{C}_{1} \mathrm{C}_{2}
$$

vs. bez-BRaD-ý
vs. roz-DRoB-it
vs. od-HRaB-at
vs. roz-HNěV-at
vs. vz-PRuH-a
vs.
vs.
vs.
4. $/ \mathrm{CCvC} /==>+\mathrm{e}$
$/ \mathrm{CøC/}==>$-e
the grammar may detect this difference only if it is encoded in the lexicon.
(4) Internal Structure of segments: vowels, KLV 1985
a. monovalency
b. head-operator relation
c. matrix calculus
d. interpretational autonomy, Harris 1994, Harris \& Lindsey 1995
e. phonology <--> phonetics
f. representation of ATR

II. The 1990 Model

(5) Charm
a. physiological foundation: cavity maximisation
b. incompatibility of [a] and ATR, cf. ATR-harmonic systems
(6) Charm-based syllabification: KLV 1990
a. consonantal Charm is negative, its vectors are L^{-}and H^{-}
b. charmed segments are governors, charmless segments are governees.
c. hierarchical realtions between adjacent consonants: homorganic NC, maximal inventory of consonants in simplex Onsets and in the first part of branching Onsets, restricted inventory in Codas and in the second part of branching Onsets. Therefore:
simplex Onsets and the first part of branching Onsets are "strong" = governors
Codas and the second part of branching Onsets are "weak" = governees
d. syllabification is a consequence of governing relations holding between consonants
e. strict directionality

1. within a constituent, Government is head-initial

Constituent Government
2. among constituents, government is Head-final

Interconstituent Government
f. strict adjacency: governor and governee must pertain to adjacent skeletal slots
g. exhaustive inventory of syllabic constituents ($\mathrm{X}=$ =heads)

$\begin{array}{cccc}0 & & \\ \mid \backslash & & \\ \mid & \\ \mid & & \\ & \\ X & x X & & \\ & x\end{array}$

X x Constituent Government
h. all syllabic constituents are binary, ternary structures are ruled out:
[X x x] and [$\mathrm{x} \mathrm{x} \mathrm{X]} \mathrm{violate} \mathrm{Adjacency}, \mathrm{[} \mathrm{x}$ X x] violates directionality.
i. the Coda is deprived of its status as a syllabic constituent. Its x-slot is directly adjoined to the Rhyme (postnuclear rhymal complement).

1. O, N and R are universally present in all languages, the Coda is not.
2. all constituents are governing domains, the Coda is not: if it were, e.g. [rp] in carp Strict

Directionality requires its head to be the [r], but [r] cannot govern [p], cf. Charm and branching Onsets.
3. all other constituents govern: O governs "Coda", N governs its O . Only the Coda would never govern anything.
j. exhaustive inventory of domains of Interconstituent Government

k. Empty Category Principle ECP: a Nucleus may be uninterpreted if it is properly governed.

1. Proper Government PG
2. PG is a form of internuclear Government
3. the governor may not itself be governed
4. PG cannot apply over a governing domain
m . illustration: vowel - zero alternations

Moroccan Arabic	kItøb-u	CeC-køtb- \varnothing	kIttIb- \varnothing
German (optional elision)	innør-e	inner- \varnothing	inner-lich
Tangale (Chadic)	dobø-go	dobe	dobu-n-go
Somalii (Cushitic)	nirøg-o	nirig- \varnothing	nirig-ta
Turkish	devør-i	devir- \varnothing	devir-den
Slavic (e.g. Czech)	lokøt-e	loket- \varnothing	loket-ní
Hungarian	majøm-on	majom- \varnothing	majom-ra

gloss
they have written, he has written, he has caused to write inner+infl, inner, internal called, call, called me
young female camel pl, sg indef, sg def transfer ACC, NOM, ABL elbow GEN, NOM, adj. monkey Superessive, NOM, Sublative

Coda Licensing, Kaye 1990
a. closed syllable shortening

VVC-V	VC-ø	VC-CV		
?a-quul-u	qul	ta-qul-na	Cl. Arabic	"say 1sg, imper, 2pl fem"
meraak-I	merak	merak-tan	Turkish	"law NOMsg, poss., NOMpl"
kraav-a	kraf	kraf-ka	Czech	"cow NOMsg, GENpl, dim."

b. Prosodic Government, Kaye\&Lowenstamm 1985: superheavy Rhymes are excluded by virtue of c command relations holding within constituents.
c. if so, their exclusion should be universal. But several languages exhibit closed slyyable shortening while exhibiting superheavy Rhymes:

1. English	keep	vs.	kept	
2. Quebec French	veer	vs.	vert	"green masc, fem"
3. Wolof (West Atlantic)	roof	vs.	roppi	"put in, take out"
	teer	vs.	teddi	"start/ stop a vehicle"

d. all counter-examples challenging the universality of Prosodic Government are word-final.
e. if the vowel shortens because a consonant is incorporated into its Rhyme, all C-C clusters are expected to be well-formed domains of Interconstituent Government. This however is not the case: Turkish

POSS	NOM	ABL	NOM pl	
meraak-I	merak	merak-tan	merak-lar	$[\mathrm{kt}]$ ok, $[\mathrm{kl}]$ bad
sevaab-I	sevap	sevaptan	sevap-lar	$[\mathrm{pt}]$ ok, $[\mathrm{pl}]$ bad
usuulj-y	usulj	usulj-den	usulj-ljer	$[\mathrm{ljd}]$ ok, $[\mathrm{ljlj}] \mathrm{ok}$

$==>$ theory predicts that the first part of the bad sequences does not belong to the preceding Rhyme.
Thus, "closed syllable shortening" has nothing to do with closed syllables.
f. interaction of vowel-zero alternations and "closed syllable shortening"

Yawelmani

1. C-final stems

saap-it	sap-hin	sap-nit
goob-it	gob-hin	gob-nit

2. V-final stems
pana-t panaa-hin panaa-nit
?ile-t ?ilee-hin ?ilee-nit
3. CC-final stems with vowel-zero alternation
$\begin{array}{ccc}\text { ?aml-al } & \text { ?aamil-taw } & \text { ?aamil-ka } \\ \text { moxl-ol } & \text { mooxil-taw } & \\ \text { mooxil-ka }\end{array}$
zero provokes shortening of the preceding vowel. The Projection Principle prohibits resyllabification in such cases. Zeros occurring in vowel-zero alternations have a syllabic identity, i.e. an Empty Nucleus. Thus, the consonant preceding the zero pertains to the Onset of the Empty Nucleus hosting the zero. It does not close the preceding syllable. Again, the shortining of the vowel has nothing to do with closed syllable shortening.
g. rather, shortening takes place before an Empty Nucleus
h. this explains the lack of phonotactic constraints on the cluster following the shortened vowel, cf.
the two consonants belong to independent Onsets.
i. if (g) is correct, then all [-C]-final words in Turkish and Yawelmani must be followed by an empty

Nucleus. Hence, word-final consonants reside in an Onset, i.e. the Onset of the Final Empty Nucleus.
$=>$ Coda Licensing Principle: Post-nuclear rhymal positions must be licensed by a following Onset
j. the contrast of superheavy Rhymes existing in __ , but absent word-internally falls out naturally (keep
vs.
kept). Long vowels freely occur word-finally before a consonant.
k. 1. Prosodic Government is universal, keep etc. are no instances of closed syllables. Shortening in English, Quebec French and Wolof is due to Prosodic Government.
2. shortening in Turkish and Yawelmani is due to the presence of an Empty Nucleus following the shortened vowel.

1. word-internal and word-final "Codas" often do not behave alike:
2. word-final consonants, against word-internal Codas, do not contribute to the weight of the Rhyme, Hayes 1982.
3. Germanic Languages: massive clusters word-finally that have no parallel word-initially: sixths, des Herbsts, du plantschst, Levin 1985.
(8) Indirect relations bearing on constituents: Government Licensing, Charette 1990
a. Quebec French. PG targets schwa (=e). Alternations are optional (TR=cluster of increasing sonority, $\mathrm{RT}=$ cluster of decreasing sonority).

CeCV	CeCCV	RTeCV	TReCV
sømaine	secret	porcherie	librement
	*søcret	*porchørie	*librøment

b. Czech

Name of a man

1. Pátrek

Davídpek
2. Pátek

Davídek
c. CeCV semaine:

CeCCV secret:
CCeCV porcherie, librement:

Name of his wife or daughter ${ }^{11}$
ok
Pátreková
Davídpeková *Davídpoková
Pátøøková *Páteková
Davídǿová *Davídeková
PG applies
PG is blocked by an intervening governing domain
PG is also blocked by a preceding governing domain
d. $==>$ Government Licensing: a non-nuclear head of a governing domain may govern its complement only
if it is licensed to do so by its Nucleus. Only ungoverned Nuclei may license.

(9) Indirect relations bearing on segments: Licensing Inheritance Harris 1992, 1998
a. Prosodic Licensing or p-licensing defines lateral relations among constituents or higher units. It sanctions the existence of x-slots.

[^0]b. Autosegmental Licensing or a-licensing
defines the amount of melodic content that may be associated to constituents. It sanctions melodic material (phonological primes).
c. Licensing Inheritance the a-licensing power of a given constituent is a function of its p-licensing status. A p-licensed constituent has less a-licesing power than a constituent escaping p-licensing. Every constituent intervening on a licensing path transmits only a part of the a-licensing power transmitted.
d. application: under Coda-Licensing, the disjunctive context $\{\ldots, \ldots . C\}$ has no uniform description in form of a single constituent. Hence, what about the broad range of phenomena occurring in this context? Cf. devoicing, lenition, deaspiration,...

1. lenition

. C	\#		V__V
Spanish: s->h			
costa ->kohta	después	-> dehpuéh	
Caribbean Spanish:: r,1-> j			
revolver -> revojvej	papel	-> papej	
carta -> cajta	algo	-> ajgo	
Brazilian Portuguese: 1-> w			
salga -> sawga	sal	-> saw	saleiro
falta -> fawta	papel	-> papew	papelâo
Serbo-Croatian: 1-> o			
čitaoc-a GENsg	bio		čitalac, bila
English: r -> zero card	car		rain, carry
depalatalisation (L,N=palatal lateral, palatal nasal)			
Spanish			
beldad	doncel		beLo, donceLa
rencilla	desdén		reNir, desdeNar
3. devoicing			
German			
lesbar	Bad, Tag		er, Tage, Häuser

e. word-initial Coda-consonants and word-final consonants share the fact that their constituents receive
their a-licensing power indirectly: "Codas" via the following Onset, which in turn is p-licensed by its Nucles, ...C\# via the following final empty Nucleus, which in turn is p-licensed by parametric licensing of FENs.
f. intervocalic phenomena

1. voicing: American English pity -> pidy
2. tapping: English $\mathrm{t}-\mathrm{P}$ R ($\mathrm{R}=$ flap)
pity -> piDy
3. deletion: English h->zero
ve'hicular
vs. 've(h)icle
pro'hibit vs. pro(h)i'bition
4. spirantisation: Spanish, Tiberian Hebrew,...

la ßanca	vs.	banca
la Demora	vs.	demora
la Gana	vs.	gana

g. foot-internal Onsets of left-headed feet are in the same situation as consonants in __.C and __ . In [O1 N1 O2 N2], the Head N1 p-licenses N2, which in turn p-licenses O2. By contrast, O1 is directly p-licensed by the Head N1.
h. thus, consonants in $\left\{\ldots . \mathrm{C}, \ldots, \mathrm{CV}^{\prime}, \mathrm{V}\right\}$ are treated on a par. They are predicted to exhibit the same
phenomena.
i. Licensing Inheritance not only provides a uniform description of the three lenition-sites, but it also says WHY these sites should favour lenition rather than any other context.
j. problems

1. no lenition normally occurs before word-internal empty Nuclei (=under PG), although these are predicted to trigger transmit the same a-licensing power as word-final empty Nuclei.
2. the kind of lenition-phenomena observed intervocalically (=Foot-internal) is much different from the one occurring in "Coda"-positions. Thus, all three contexts should not conform to the same theoretical status.
3. the argument for intervocalic contexts holds only for left-headed feet. In a language exhibiting right-headed feet, lenition is predicted foot-(=word-)initially, but not foot-(word-)internally. This configuration can hardly be observed in any language.
4. all three contexts are indirectly p -licensed. But the lactors intervening in the licensing path are quite different: p-licening transits via an Onset in _.C, but via a Nucleus in 'CV__V and __\#. The ultimate source of licensing are Nuclei in __.C and 'CV __V, but parametric licensing of FEN in __\#. Should these different theoretical configurations yield identical empirical results?
casting doubt on Charm
a. existence of nasal [a]
b. A+ and ATR+ repel each other, but which are the empirical consequences of the alleged attraction
$\left\{\mathrm{H}^{-}, \mathrm{L}^{-}\right\}$and $\left\{\mathrm{A}^{+}, \mathrm{N}^{+}, \mathrm{ATR}^{+}\right\}$?
c. which is the evidence for choosing L and H as vectors of consonantal Charm rather than any other Elements?
d. choosing H and L is a hidden way of capturing the traditional [-son] feature. Consonantal Charm carried by H and L is a different formulation of [+-son].
e. like charmed Elements are supposed to repel each other. Indeed, L- and H- do never combine, but this is a simple physiological fact achieved anyway: vocal chords cannot simultaneously be stiff and slack.
f. doubt has been cast on the existence of an independent ATR Element. If ATR is expressed by other means, the foundations of Charm are dismissed.
(11) Complexity-driven syllabification instead of Charm-dirven syllabification, Harris 1990
a. the more phonological primes a segment is made of, the more complex it is.
b. in order for a governing relation to hold, the governee may not be more complex than the governor.
c. traditional way of encoding the sonority hierarchy into segmental structure: features such as [+ -son], [+-cons] etc. This is circular: 1. observation that [r] is a sonorant, 2. introduction of [+son] into its internal structure, 3 . why is $[\mathrm{r}]$ a sonorant and occupies the corresponding place within the string? Because it bears [+ son].
d. this kind of feature is ruled out anyway if all primes are independently pronouceable.
e. Charm is but a hidden [+-son]. It doesn't depend on any idiosyncratic property of the segments. By contrast, Complexity is calculated on the basis of ALL primes that contribute to the articulation of a segment. It is thus a function of every segment's idiosyncratic make-up. It can be controlled and falsified by segmental alternations.
f. hence, in order to know which segment may govern which other segment, the internal structure of consonants is crucial. It is achieved on the bassis of considerations that are totally independent from syllabic structure, that is segmental alternations. Unlike [+-son]- and Charm-based syllabification, this approach is not circular.

III. Internal Structure of Consonants

(12) Harris 1990, 1994, Harris \& Lindsey 1995
a. Elemental inventory

Place
I - palatality
U- labiality
A - absent in consonants
v - velarity
R - coronality
b. Places of articulation
bilab lab-dent interdent alv pal postpal vel uvul phar glott
? $, \mathrm{U} \quad \underline{\mathrm{h}}, \mathrm{U}$
[I] ?- constriction
[?]
[U] h-noise
[h]
L - slack vocal chords
--- H - stiff vocal chords
--- ---
vel uvul phar glott $\underline{\mathrm{v}} \quad \underline{\mathrm{h}}, \mathrm{A} \quad \underline{\mathrm{A}}, \mathrm{h} \quad \underline{?}$
c. Manner

Glides	---
Liquids	$?$
Nasals	$?+\mathrm{N}$
Fricatives	h
Stops	$\mathrm{h}+?$

d. some consonants (initial Elements are Heads)

t-R,?,h,H	c - I,?,h,H	? - ?	
p-?,U,h,H	d - R,?,h,L	k - v,?,h,H	h-h
f-h, U, H	s-h,R,H		
th - R,h,H			
m- ?, U, N	1-?,R		
$\mathrm{n}-\mathrm{R}$, , N	r-R		
nj-I,N			

(13) problems
a. Head-operator relation: why should bilabials and Liquids be especially constricted?
b. R

1. literature against R: Broadbent 1991, Backley 1993, Brockhaus 1994, Scheer 1996.
2. any theory should recur to the same set of Place-primes when defining vowles and consonants, Clements 1993, Smith 1988, Carvalho\&Klein 1996, Weijer 1994, Cyran 1994, Harris\&Lindsey 1995 (sic). R is unkown in Nuclei, A in Onsets.
3. prediction: there is no interaction between coronal consonants and vowels: combinations of R and $\{I, U\}$ are not defined.
c. prediction: velar consonants never influence on vowels: the cold vowel may not be spread.
d. heavy overgeneration, mainly because anything may be the Head of an expression: e.g. ?,R - R,U - U,R - v,R - v, I - L,R - H,U - N,I,...
(14) alternative proposals: e.g. Weijer 1994, Cyran 1994, Rennison in press, Scheer 1996, in press.
(15) principles in response of (13), Scheer 1996, in press
a. one-to-one correspondance between phonological representations and their phonetic manifestation.
b. like any other linguistic expression, segmental expressions are asymmetrical. The Head contributes more to the phonetic result than the Operator(s).
c. the set of primes defining Place is identical for vowels and consonants.
d. no R.
e. only universal primes, that is Place-definers, head segmental expressions.
(16) velarity and roundness are two distinct phonological objects
a. back unrounded vowels. KLV 1985: back high -round + ATR $=$ ATR, mid + ATR $=$ v,ATR,A. Back unrounded -ATR vowels are predicted not to exist phonologically.
b. both I, U and $\mathrm{U}, \mathrm{I}=[\mathrm{y}]$?
c. KLV 1985: U is present in front rounded vowels. I and U don't combine in languages lacking front rounded vowels. Prediction: languages exhibiting front rounded vowels, thus where I and U combine, possess a higher number of consonants than languages lacking front rounded vowels. The opposite is true.
d. interactions of $\mathrm{U}=[\mathrm{u}, \mathrm{w}]$ and velar consonants
4. in Fular 2$][\mathrm{w}]$ regularly alternates with [g]. Consider for example the different forms of the stem wor "masculine" when connected to the various adjectival nominal class-suffixes.

class	class				class
1	gor-ba	9	gor-gal	18	gor-
					koj
2	wor-de	10	gor-gel	20	wor-be
3	gor-di	11	gor-gol	21	gor-de
4	wor-du	13	gor-ki	22	gor-di
5	gor-ga	15	gor-ko	23	gor-ko
8	gor-gu				

2. broken plural formation in Moroccan Arabic
in the variety of Moroccan Arabic described by Ettajani (prep), only velar and uvular consonants tolerate a labial secondary articulation: $\left[\mathrm{k}^{\mathrm{W}}, \mathrm{w}^{\mathrm{w}}, \mathrm{q}^{\mathrm{W}}\right]$ exist, whereas $*\left[\mathrm{~s}^{\mathrm{W}}, \mathrm{D}^{\mathrm{W}}\right]$ etc. do not occur. This distribution is transparent in broken plural formation where a $[\mathrm{w}]$ tries to parachute on the first rootconsonant (data and analysis by Ettajani):
sing broken plural ($\mathrm{Z}=$ voiced postalv., $\mathrm{X}=$ voicelss uvul., $\mathrm{I}=$ high schwa)
labial secondary articulation possible

kbir	k^{W} bar	"tall"
дubza	χ^{W} bazi	"bread"
дurza	$\chi^{\mathrm{W}_{\text {razi }}}$	"node"
kursi	k^{W} rasi	"chair"
qamiza	q^{W} ami3	"shirt"

[^1]| smin | sman | $*_{s}{ }^{W}$ man | "fat" | |
| :--- | :--- | :--- | :--- | :---: |
| silla | slali | $*_{s}{ }^{W}$ lali | "basket" | |
| Drif | Draf | ${ }^{2} D^{W}$ raf | "nice" | |

3. short [u] in Ge'ez (Classical Ethiopic):
in Ge'ez (cf. Ségéral 1995:155ss), short high peripheral vowels do not exist. Only a short [u] can be observed in nominal morphology iff it is preceded or followed by a velar or uvular consonant [k,g,q,x].
4. Czech vocative
in Czech, three vocative-allomorphs occur with consonant-final masculine nouns: $-i$ iff the last consonant of the stem is palatal, $-u$ iff it is velar, and $-e$ elsewhere.

-i/ Cpal_	nominative kuun	vocative kən-i	($\mathrm{N}=$ palatal $\mathrm{n}, \mathrm{D}=$ voiced pal. stop, $\mathrm{R}=$ palatal $\mathrm{r}, \mathrm{S}=\mathrm{sh}$) "horse"
	tomaaS	tomaaf-i	"Thomas"
	$\begin{aligned} & \text { lhaař } \\ & \text { zlof } \end{aligned}$	lhaař-i zlofej-i	"liar" "thief"
	slec	slef-i	"herring"
-u / C $\mathrm{vel}^{\text {L }}$	hox	hox-u	"boy"
	gonk	gong-u	"gong"
	zdenık	zdenk-u	first name
	ptaak	ptaak-u	"bird"
- / elsewhere	pes	ps- ε	"dog"
	doktor	doktor- ε	"doctor"
	holup	holub- ε	"pigeon"
	hrat	hrad- ε	"castle"
	¢ef	$\int \mathrm{v}-\varepsilon$	"seam"

e. reason for 1. (a), 2. $v=$ velarity, 3. absence of U from velars: indissociability of velarity and roundness in U . Any articulation U participates in is predicted to be rounded. $==>\mathrm{U}$ has to be absent from velars and back unrounded vowels.
f. two distinct vectors for velarity and roundeness/ labiality:

U - velarity
B - roundness/ labiality
g. consequences: front rounded vowels are a combination of I and B, not of I and U. (b) and (c) are without substance.
(17) $[\mathrm{t}, \mathrm{d}]$ are nothing
a. they are NEVER the result of a phonological process.
b. markedness

1. unmarked within coronals, coronals being unmarked among consonants.
2. unmarkedness = consequence of the absence of Place-definers: Underspecification Theory, cold
vowel
in KLV 1985.
3. articulation: unmarkedness corresponds to the tongue body in relaxation.
c. [t,d] are typically epenthetic
4. French /a il dit/ > a-t-il dit "he has said"
/verra on/ > verra-t-on "we will see"
5. French
epenthetic [t]
/esquimau + age/ $>$ esquimautage
/glouglou + er/ $>$ glouglouter
$/$ bijou + ier $\quad>$ bijoutier
/indigo + ier/ $>$ indigotier
/tableau + in/ $\quad>$ tableautin
/cacao + ière/ $>$ cacaotière
epenthetic [d]
/Marivaux + er/ > marivauder
6. Middle-High-German $(\mathrm{MHG})>$ New High German (NHG)
MHG NHG MHG NHG

(18) Distribution of A in Obstruents
a. correspondence Fricatives - Stops ($\mathrm{P}=$ phi, th, $\mathrm{dh}=$ interdental, ch, $\mathrm{j}=$ palatal, $\mathrm{S}, \mathrm{Z}=$ postalv, $\mathrm{Q}=$ gamma $)$

1. Fricatives	Stops
ϕ, β	p, b
f, v	---
$\theta, \mathrm{\partial}$	---
s, z	t, d
$\dot{\mathrm{s}}, \mathrm{z}$	---
c, j	c, f
$\int, 3$	---
$\mathrm{x}, \mathrm{\gamma}$	k, g
χ, b	q, G

b. phonetic reflect: Fricatives possessing Stops are mate, Fricatives lacking Stops are strident.
c. typical affricates are candidates to fill the "holes": [pf], [ts,dz], [tś, dź], [tS,dZ], [kX]: their second part
all and only the Fricatives for which simplex Stops are missing. Filling in the affricates according to this criterion provokes two mismatches: $1 .[\mathrm{ts}, \mathrm{dz}]$ are supposed to face $[\mathrm{s}, \mathrm{z}]$, but this place is already taken by $[\mathrm{t}, \mathrm{d}], 2$. there is no affricate with a second interdental part. Both problems are solved when considering $[\mathrm{t}, \mathrm{d}]$ to be the Stops related to [th, dh]. Segmental alternations confirm this move, cf. below.
d. spirantisation accompanied by a change of Place

1. Grimm's Law

Latin and Greek forms witness the Indo-European state of affairs (Gothic spelling $b=[\mathrm{th}]$).
a. spirantisation 3

IE $>$	Germ>Got		Lat/ Gr	Got	
p,ph	f	f	pater	fadar	"father"
	v	b	septem		sibun

b. devoicing

b	p	p	(s)lubricus
g	k	k	ego
d	t	t	edo

*sliupan	"sneak"
ik	"I"
itan	"eat"

c. the following three correspondences characterizing Grimm's Law can thus be established for the oldest record of Germanic (see e.g. Collinge 1985:63ss):

IE
STOP + voice, -asp
STOP + voice, +asp
STOP -voice, \pm asp

Got
STOP -voice, -asp
STOP + voice, -asp
[FRIC -voice, STOP + voice] -asp
d. in the light of various secondary processes such as the Second Consonant Shift and using arguments of comparative studies across the Germanic language family, the following correspondences are commonly reconstructed for (unrecorded) Common Germanic:

IE
STOP + voice, -asp
STOP + voice, + asp
STOP -voice, \pm asp
FRIC \pm voice
e. According to classical interpretation (e.g. Paul et al. 1989:113), the chronology of events is as follows: in a first step, IE non-aspirated unvoiced stops develop aspiration: IE p,t,k>Germ $\mathrm{p}^{\mathrm{h}}, \mathrm{t}^{\mathrm{h}}, \mathrm{k}^{\mathrm{h}}$. Then, all aspirated stops, voiced or not, become fricatives: IE $\mathrm{p}^{\mathrm{h}}, \mathrm{b}^{\mathrm{h}}, \mathrm{th}^{\mathrm{h}}, \mathrm{d}^{\mathrm{h}}, \mathrm{k}^{\mathrm{h}}, \mathrm{g}^{\mathrm{h}}>\operatorname{Germ}$ $\mathrm{f} / \mathrm{v}, \theta / \mathrm{d}, \chi / \mathrm{s} 4$ The IE non-aspirated stops that are left remain non-aspirated AND stops, but they devoice: IE b,d,g > Germ p,t,k.

[^2]f. summary: only aspirated stops spirantise.

	non-aspirated		aspirated	
	voiced	unvoiced	unvoiced	voiced
$\begin{array}{\|c} \hline \text { inventory } \\ \text { of IE } \\ \text { stops } \end{array}$	b, d, g	$\mathrm{p}, \mathrm{t}, \mathrm{k}$	$\mathrm{p}^{\mathrm{h}}, \mathrm{t}^{\mathrm{h}}, \mathrm{k}^{\mathrm{h}}$	$\mathrm{b}^{\mathrm{h}}, \mathrm{d}^{\mathrm{h}}, \mathrm{g}^{\mathrm{h}}$
Germanic	∇	\longrightarrow		$\mathrm{b}^{\mathrm{h}}, \mathrm{~d}^{\mathrm{h}}, \mathrm{~g}^{\mathrm{h}}$
$\begin{array}{\|c} \hline \text { Grimm's } \\ \text { Law } \end{array}$	p, t, k			$\begin{aligned} & x, \mathrm{X} / \mathrm{R} \end{aligned}$

2. Bavarian (cf. Saussure's Law in IE), Schwarz 1950,57
standard German
behüte dich
Behälter
Bavarian
bøhiat di $>\mathrm{b}^{\text {hüet }}$ di $>$ pfiat di
Pfalter "Fischteich"
3. conclusion: aspiration triggers spirantisation accompanied by a change in the Place of articulation.
e. spirantisation with invariant Place
4. Spanish
a. fricatives occur after vowels ($\mathrm{G}=$ gamma, $\mathrm{N}=$ velar nasal)

la ßa ka	la banca	"the bank"
la ðemora	la demora	"the delay"
la Gana	la gana	"the desire"

b. stops occur elsewhere
word-initially
ba ka
demora
gana
after consonants
ambos
onda
aldea
teNgo
banca
demora
gana
ambos
onda
aldea
tengo
"bank"
"delay"
"desire"
"both"
"wave"
"village"
"I have"
2. Tiberian Hebrew ($\mathrm{P}=$ bilabial voiceless fricative, $\mathrm{G}=$ gamma, $\mathrm{th}=$ interdental voicelss fr.)
root perfective imperfective alternation(s)
zkr zaaxar yi-zkor
kpr kaaфar yi-xpor
x-k "remember"
k-x, ϕ-p "cover"
bdl baaðal yi-ßdal b- β, \varnothing-d "separate"
pth paa θ ah yi- ϕ tah p- $\phi, \theta-\mathrm{t}$ "open"
pgf paayaf yi- ϕ gof $\quad \mathrm{p}-\phi, \gamma-\mathrm{g}$ "meet"
f. summary
aspiration triggers spirantisation vocalic contexts trigger spirantisation AND

AND
alternation of the Place of articulation NO alternation of the Place of articulation
g. aspiration is a glottal activity. The prime responsible for articulations in this region is A. Hence, A is likely
to participate in aspiration.
x
/ \ [Ch]

C A
h. A is responsible for the shift in the Place of articulation

1. bilabial $+\mathbf{A}=$ labio-dental
2. dental $+\mathbf{A}=$ interdental
3. velar $+\mathbf{A}=$ uvular
i. general summary
4. stops incorporating \mathbf{A} as in Grimm's law spirantise because
5. some Places of articulation lack stops because
\mathbf{A} and $\boldsymbol{?}$ are incompatible within a given phonological
expression
6. this is plausible: A and ? represent opposite properties: maximal aperture vs. maximal closure. They represent the two segments that are maximally distant on the sonority scale: [a] vs. [?].
7. incorporation of A (=aspiration) into the segmental structure of the Stop expells ?, which is either completely lost (Grimm's Law) or retained in a contour structure, i.e. the result is an affricate. E.g. typical diachronic spirantisation
Stop > Affricate > Fricative
e.g. French affrication before [a]:

(19) internal structure of Obstruents ($\mathrm{P}=$ phi, th=interdental voiceless fric., $\mathrm{D}=$ palatal voiced stop, $\mathrm{J}=$ voiced palatal fric., $\mathrm{S}, \mathrm{Z}=$ postalv. fric., $\mathrm{R}=$ voiced uvular fric., $\mathrm{H}, 9=$ voiceless and voiced pharyngeal fric., $\mathrm{g}^{\prime}=$ voiced velar fric., $\mathrm{h}^{\prime}=$ voiced glottal fric.)

(20) sonorants
a. $[\mathrm{r}]$ contains A: German
8. $[\mathrm{r}]>[\mathrm{e}] / \mathrm{V}$ \#

fooe	vor	"before"
nue	nur	"only"
hoков	Horror	"horror"
mawe	Mauer	"wall"
bææe	Bär	"bear"
biie	Bier	"beer"
leee	leer	"empty"
foje	Feuer	"fire"

2. $[\mathrm{r}]>[\mathrm{e}] / \mathrm{V} _\mathrm{C}$ C
lueç Lurch
"amphibian"
gebirge Gebirge "mountain"
lort Lord "Lord"
3. $[\mathrm{r}]>[\mathrm{a}] / \mathrm{a} _\{\mathrm{C}, \#\}$ baat Bart "beard"
baa§ Barsch "perch"
faat Fahrt "trip"
gaa gar "done, cooked"
4. $[r]>[R] / C_{-}$
5. $[r]>[R] / V _V$
dьај, *dвај drei "three"
gьајs, *geajs Greis "old man"
p χ ajs *peajs Preis "price"
pisaat Pirat "pirate"
kаваат Karat "carat"
ооваап Oran Algerian city
b. [r] contains I
6. Southern Dutch (Rotterdam, Leiden) r > j / _ $\{\mathrm{C}, \#\}$
standard Dutch Southern Dutch

daar	daaj	daar	"over there"
kaart	kaajt	kaart	"card"
stoort	stoojt	stoort	"disturb 2sg.pres"
karnen	kajnen	karnen	"make buttermilk"
verpt	vejpt	werpt	"throw 3sg.pres"

2. Caribbean Spanish: $\mathrm{r}>\mathrm{j} / \ldots\{\mathrm{C}, \#\}$
standard Spanish Caribbean Spanish
revolver revojvej
karta
papel
algo
kajta
papej
ajgo
"revolver"
"card"
"paper"
"something"
c. $[1, \mathrm{n}]$ contain I

German: $[\chi]$ and $[\varsigma]$ are in complementary distribution. $[¢]$ occurs after front vowels, $[\chi]$ after $[\mathrm{a}, \mathrm{o}, \mathrm{u}]$:

1. $[\chi]$ after $[\mathrm{u}, \mathrm{o}, \mathrm{a}] \quad[\mathrm{c}]$ after [$\mathrm{y}, \varnothing, \mathrm{i}, \mathrm{e}]$ absence of \mathbf{I} presence of \mathbf{I}
buu χ byyçe "book sg/pl"
ko χ keçin "cook masc/fem"
bax beçə "creek sg/pl"
iç "I"
milç "milk"
manç "some"
d. [1] contains I
2. Italian: lat $1>\mathrm{j}$ in branching Onsets

3. Salzburg German: [1] in Codas palatalises (and labialises) the preceding vowel, Rennison 1978 alternation standard German Salzburg German ($\mathrm{E}=$ schwa)
i-ü
selten
Feld
Schalter
Wald
poltern
Gold
Schulter
Schuld
Mehl
vüttE
BüüdE
zöttn
vööd
ZojttE
Boojd
bojttEn
goojd
ZujttE
Zuujd
möövs. mehlig meelik
e. Naslas contain A
4. German: nasals lower high vowels. MHG high vowels followed by a (geminated) Nasal regularly surface as mid vowels in NHG.

MHA	NHA	
sunne	Sonne	"sun"
sumer	Sommer	"summer"
kumen	kommen	"come"
münech	Mönch	"monk"
sun	Sohn	"son"
künec	König	"king"
gewunnen	gewonnen	"won"
geswummen	geschwommen	"swum"

2. vowels are nasalised before a nasal consonant and \{C,\#\}
a. Common Slavic. $==>$ no high nasal vowels in Polish.
b. French. $==>$ no high nasal vowels in French. fin vs. fine, brun vs. brune.
f. $[\mathrm{r}],[1]$ and $[\mathrm{n}]$ are variants of the same phonological object

Several genetically non-related languages present alternations of [r], [1] and [n] without apparent segmental conditioning.

1. Chaha (Ethio-Semitic language): $[\mathrm{r}]$ and $[\mathrm{n}]$ are allophones, $[\mathrm{n}]$ occurring word-initially and before obstruents, [r] elsewhere.

preterite	present	jussive	root	
1 sg nädäf-x ${ }^{\text {Wim }}$	ä-rädif	ni-ndif	Rdf	"card (wool)"
1 sg näk ${ }^{\text {y }}$ äm-x ${ }^{\text {wim }}$	ä-räk ${ }^{\text {y }}$ im	ni-räkim	$\mathrm{Rk}^{\mathrm{y}} \mathrm{m}$	"ride (horse)"

2. Corean: [1] and [r] are allophones. [r] is found intervocalically, whereas [1] occurs word-finally and in consonantal environments ($\mathrm{U}=$ rounded high schwa)
aR "know"
/aR + ta/ --> aal-ta citation form
/aR + Upnita/ -- > ar-tpnita politeness form
$/ \mathrm{aR}+\mathrm{Uo} / \quad$--> ar-to \quad exhortative form
$/ \mathrm{aR}+\mathrm{a} / \quad$--> ar-a declarative form
$[1] /[\mathrm{r}]$ have a third allophonic variant word-initially, that is [n$]$ (but not every Corean $[\mathrm{n}]$ is an allophone of [1]/[r]):
Rak
/o + Rak/ --> o-rak "diversion"
/ø + Rak/ --> nak "pleasure"
/Rak + won/ -- > nak-won "paradise"
3. MHG: numerous doublets of the same word involving [1] and [r] (cf. Paul et al. 1989:144).

$[r]$	$[1]$	NHG	
Herke	Helche	Helke	female first name
smieren	smielen	-	"smile"
prior	priol	Prior	"prior"
murmern	murmeln	murmeln	"murmur"
Canterbury	Candelberc	Canterbury	Canterbury
marmor	marmel	Marmor	"marble"
marter	martel	Marter	"torture"
mörter	mörtel	Mörtel	"mortar"
turter	turtel	Turteltaube	"turtledove"
môrber	mûlber	Maulbeere	"mulberry"
MHA dörper	"farmer" $>$ dörpel $>$ törpel $>$ NHG Tölpel "dolt"		

g. Summary: internal structure of Nasals and Liquids

1. [r] is A-headed (German, English)

I contributes to the articulation of [r] (Spanish, Dutch)
$[1],[\mathrm{n}]$ and $[\mathrm{r}]$ have the same melodic identity (Chaha, Corean, MHG)
[1,n] contain I (German, Italian, Salzburg German)
Nasals contain A (MHG > NHG, French and Slavic nasal vowels)
2.Liquids are A-headed
3. Nasals contain \mathbf{A} and \mathbf{N}
4.internal structures (first named Elements are Heads, $\mathrm{L}=\mathrm{velar} \mathrm{l}, \mathrm{nj}=$ palatal nasal, $\mathrm{ng}=$ velar nasal)
r-A,I,T
m - B,A,N
ng - A,U,N
1-A,I
n - A,I,N
N - U,A,N
L - A, U
nj - I,A,N
h. sonority
exclusively consonantal primes. There is no apparent connection between vocalic and consonantal sonority.
b. sonority is a function of three parameters: 1 . the constituent it pertains to, 2 . presence of consonantal Elements, 3. the role played by A. No separate sonority-prime.

segment	Nucleus/Onset	$\mathrm{h} / ?$	role of A
a	N	-	head
e, o	N	-	operator
i, u	N	-	absent
Liquids	O	-	head
Nasals	O	-	head/operator
Glides	O	-	absent
s,Z	O	h	head
gutturals	O	h	head/operator
fricatives	O	h	operator/absent
stops	O	h and ?	absent

(21) result
a. sonorants are more complex than Onstruents as far as Place Elements are concerned.
b. complexity-calculus according to Harris 1990 with these internal structures makes wrong predictions as to what is a possible branching Onset etc.

IV. CVCV

(22) the proposal, Lowenstamm 1996, in press
a. syllable structure is a strict consecution of non-branching Onsets and non-branching Nuclei.
b. the phonological identity of " $\#$ " is an empty CV. Words begin with an empty CV subject to the ECP.
(23) some arguments
a. Lowenstamm 1996
b. complexity-based syllabification is blocked with segmental identities of the kind shown in III.
c. vowel-zero alternations
d. the usual treatment of word-initial clusters is circular.
(24) vowel-zero alternations, Scheer 1997, 1998a,b
a. the statement "intervening governing domains block PG" is but an observation. It doesn't explain the phenomenon. CVCV offers an explanation.
b. CVCV dispenses with CG, ICG and Government Licensing. PG alone drives all alternations.
c. it unifies Government: PG doesn't sometimes apply and sometimes is blocked, it always applies.
d. the statement quoted in (a) is empirically falsified:

	zero	vowel	vowel	gloss
	CeC-V	CeC-ø	CeC-CV	
Moroccan Arabic	kitøb-u	køtib-ø	kittib-ø	they have written, he has
German (optional elision)	innør-e	inner-ø	inner-lich	written, he has caused to write inner+infl, inner, internal
Tangale (Chadic)	dobø-go	dobe	dobu-n-go	called, call, called me
Somalii (Cushitic)	nirøg-o	nirig-ø	nirig-ta	young female camel pl , sg indef, sg def
Turkish	devør-i	devir-ø	devir-den	transfer ACC, NOM, ABL
Slavic (e.g. Czech)	lokøt-e	loket-ø	loket-ní	elbow GEN, NOM, adj.
Hungarian	majøm-on	majom-ø	majom-ra	monkey Superessive, NOM, Sublative

BUT
Czech prefixes podø-kova --- podø-bradek horseshoe, double chin
e. Czech prefixes is the only case where the two consonants intervening between governor and governee
are monomorphemic.
f. $==>$ the reason for their special behaviour must be found in the special relation contracted by the intervening CC. Monomorphematicity $=$ tight relation.
g. running PG in a CVCV framework enforces properly governable vowels to be lexically present:

1. Czech
bezN1-bN2radý
[bezø-bradii]
French
sN 1 cN 2 ret [sekre]
if PG applied exclusively to empty Nuclei, N2 would have to PG N1 and would thus have to receive phonoetic content, yielding *bezø-beradý, *søkeret.
2. targets of PG are lexically specified as such.
3. the epenthesis-approach breaks down when facing languages with more than one alternating vowel in identical phonotactic conditions: Eastern Slavic, e.g. Russian den vs. son.
4. assuming CVCV, PG exclusively applies to lexically filled Nuclei.
a. Nuclei that are sites of a vowel-zero alternation (formerly viewed as empty Nuclei). Only reason
for
their phonetic absence: PG.
b. real empty Nuclei that never appear on the surface. Reasons for their inaudibility: PG or IG.
(25) the usual treatment of *\#RT is circular ($\mathrm{TR}=$ any sequence of rising sonority, $\mathrm{RT}=$ any sequence of falling sonority)
a. words cannot begin with a Coda. Thus, the context "word-initial" corresponds to "Onset" on the syllabic level.
b. in languages of the IE type, CCs are not free word-initially, but both ...TR... and ...RT... occur word internally. This distribution matches that of syllabic constituents: "only Onsets in \#__" vs. "both Onsets and Codas word-internally". Thus, syllabic structure is responsible for the observed restrictions.
c. the sonority value for each segment can be established independently. Word-initially, i.e. within a branching Onset, sonority must increase.
d. \#RT clusters do not exist because their sonority is falling. Hence, they cannot hold within a branching Onset. They cannot be interpreted as a Coda-Onset sequence either because there are no word-initial Codas.
e. summary
5. observation: "sonority always increases within \#CCs"
6. syllabic interpretation: "TR = branching Onset"
7. explanation: there are no \#RT because sonority must increase within branching Onsets.
(26) Infrasegmental Government (consonantal interaction), Scheer 1996,97, in press
a. word-initial restrictions resort to two different questions:

SYNTAGMATIC restrictions
\#CCs that occur or not depending on the syntagmatic order of their members: \#tr is ok, but \#rt out. In clusters of this type, the consonants always contrast in sonority.
b. SEGMENTAL/ PARADIGMATIC restrictions

There are also CCs of non-contrasting sonority that do not occur word-initially: e.g. *\#lr, rl, nl, \ln, tp . In these cases, the syntagmatic order of the members is indifferent: they are unattested in any order.
c. in response to (b):

Infrasegmental Government (IG)
iff an phonological prime faces an empty position on a given autosegmental line, it may govern this position.
d. illustration (=empty position, L=velar lateral), details cf. Scheer 1996

1. interaction possible

2. interaction impossible
I/U
A

e. inversion of the KLV model of consonantal relations:

Sonorants Obstruents
KLV governees governors
IG governors governees
f. in response to (a):

1. Government Licensing applies to IG: a consonant may govern another consonant infrasegmentally iff
is licensed to do so by its Nucleus.
2. the first vowel of a word must govern the initial empty Nucleus. Hence, it cannot be held responsible for the inaudibility of the empty Nucleus flanked by the consonants of a initial cluster \#CC.
3. in case of a \#TRV cluster, R is licensed by V and thus may govern T , the structure is well-formed.
4. by contrast, R in a *\#RT cluster is not licensed to govern T because its Nucleus is empty.
g. conditions on IG
5. time: the more time two consonants spend next to each other, the more likely they interact.
6. morphology: heteromorphemic consonants do not interact because they do not cohabitate in the lexicon.
7. Afro-Asiatic languages: no interaction at all because consonants never cohabitate with their constituents in the lexicon. Consequence: anything is possible in \# \qquad
h. list of operations satisfying the ECP
8. PG
9. licensing of Final Empty Nuclei
10. Infrasegmental Government
i. expression of the fundamental TR vs. RT contrast:
in a CCV cluster,
11. V has no governing duty in TRV cases because the empty Nucleus between T and R is cared of by

IG.
2. V must govern this empty Nucleus in RTV cases because R and T may not interact.
j. Branching Onsets and domains of IG are different
empty Nuclei never appear on the surface, but do play a cricial role in the phonology.

1. French: both well-formed [sekre] and [søcre] secret.
2. the existence of an empty Nucleus within word-initial clusters is crucial for the demonstration in (f).
k. strict directionality and strict locality are stipulations that don't follow from anything. They can be dispensed with.
(27) Alternative proposal: Gussmann \& Kaye 1993, Gussmann \& Cyran 1998
a. device of consonantal interaction over an Empty Nucleus accounting for the inaudibility of this Nucleus
needed whether CVCV is assumed or not:
Polish

NOMsg mgl-a		GENpl mgiel	mist"
pchl-a	ch= [x]	pchel	"flea"

b. two consecutive empty Nuclei (N) under any analysis:

1. $\mathrm{mgNl}-\mathrm{a}$, evidenced by vowel-zero alternation
2. $\mathrm{mNgl}-\mathrm{a},[\mathrm{mg}]$ is not a well-formed branching Onset
c. Interonset Government (IO)
in [$\left.\mathrm{mN}_{1} \mathrm{gN}_{2} 1-\mathrm{a}\right]$, [a] properly governs $\mathrm{N}_{1},[\mathrm{~g}]$ governs [1] and thereby satisfies the ECP for N_{2}.
(28) comparison
a. IO can be head-final as well as head-initial. No principled way to prefer one over the other.
b. Government Licensing does not help to account for initial \#CCs: in \#TRV clusters, T is lecensed by V in
order to govern R, i.e. licensing over R. In *\#RT clusters, there is no way to exclude T from being licensed.
c. according to (27c), PG applies over a domain of IO. Thus, the statement "intervening governing domains
block PG", that is the foundation of non-CVCV accounts of vowel-zero alternations, cannot be maintained. What, then, about vowel-zero alternations?
d. (27c) violates strict directionality.
(29) Governing domains are head-final, Scheer 1998b
a. PG is head-final, Constituent Government can be dispensed with.
b. vowel length
either long vowels never alternate
German

zuuх-en	zuū-te	zuuұ!	suchen, suchte, such!	"search, searched, search!"
zææ-en	zææ-tə	zææ!	säen, säte, säe!	"sow, sowed, sow!"

buux byyç-e Buch, Bücher "book, books"

Somali
\qquad CC
maalin
keen, keen-aa
keen-taa
faand-o "sieve, strainer indef."
eeddo, aabbe "paternal aunt, father"
or they do alternate. In this case, the alternation may be conditioned by

1. an overall constant weight of a given morphological structure

Slovak: *[..VV..] $]_{\text {root }}[V V . .]_{\text {suffix }}$, result $[. . V V . .]_{\text {root }}[\text { [V... }]_{\text {suffix }}$,
..V..-VV..
mal-ii
mal-aa $\quad \overline{\mathrm{t}}$ jir-a
mal-eemu
par-aam
par-aax
pros-iim
Czech: *[..VV] $\begin{gathered}\text { xvaal-im } \\ \text { prefix }-[. . V V . .] ~\end{gathered}$ roo
..VV- ..V.. ..V- ..VV..
zaa-tot \overparen{f}-ka za-taat $\widehat{f}-k a$
zaa-nof-ka za-naaf-ka
zaa-suf-ka za-hraat-ka
"small, clear NOMsg masc"
"id. NOMsg fem"
"id. DATsg masc"
"steam, meadow DATpl"
"id. LOCpl"
"ask, praise 1st sg present"
2. a specific grammatical category

Classical Arabic: the first vowel of a verb is long in its reciprocal from

Form5	"wear"	"write"		
I	labis	katab	semantically unmarked	
IIlabbas		kattab	causative/ intensive	
III	laabas	kaatab	reciprocal	
VII	nlabas	nkatab	inchoative	

Czech: infinitives have at least two moras 6
inf 1st sg pres past active participle prefixed inf
kraas-t krad-u kradl "steal"
ruus-t rost-u rostl "grow"
krii-t kri-j-u kril "cover"
staa-t se stan-e se stal se "become"
znaa-t znal "know"
po-znat "recognize"
dlel "stay"
pral "wash"
3. lateral relations between segments may cause an alternation commonly referred to as closed syllable shortening
VVC-V VC-ø VC-CV

[^3]| ?a-quul-u | qul | ta-qul-na | Cl. Arabic | "say 1sg, imper, 2pl fem" |
| :--- | :--- | :--- | :--- | :--- |
| meraak-I | merak | merak-tan | Turkish | "law NOMsg, poss., NOMpl" |
| kraav-a | kraf | kraf-ka | Czech | "cow NOMsg, GENpl, dim." |
| Italian | | | | |
| VVCV | VC-ø | VVTRV | VRTV | |
| faato | Si | piigro | parko | "destiny, ski, lazy, park" |

evolution: SPE-rule (non-explanatory, non-CVCV), Prosodic Government (explanatory, nonCVCV), Coda- Licensing (non-explanatory, CVCV), Larsen 1995 (explanatory, CVCV).
4. a short vowel may become long when an adjacent segment fails to be realized. This phenomenon called Compensatory Lengthening
Latin

*kasnus > kaanus	"gray"
*kosmis > koomis	"courteous"
*fideslia > fideelia	"pot"
Tiberian Hebrew	
ha	definite article
kolaßim, reqahim	"dogs, spices"
ha kkəlaßim	"the dogs"
haa rəqahim	"the spices"
Chilungu	
/ma-tama/ > matama	"cheeks"
/ka-koma/ > kakoma	"one who kills"
/ma-ino/ > miino	"eyes"
/ka-eleka/ > keeleka	"one who cooks"

c. conclusion on vowel-length:
lexical representation of an alternating long vowel

a non-alternating long vowel

(30) Italian Tonic Lengthening, Raddoppiamento Sintattico, definite article, Larsen 1995
a. Tonic Lengthening

1. data

VV	V	
fato	parco	"destiny, park"
pigro	pasta	" lazy, pasta"
fatto		"fact"

2. analysis: long vowels are short underlyingly. An extra CV is provided by stress. The CV provided by stress must be licensed by PG in order to constitute a well-formed target for the spreading of the preceding vowel.

[^4]b. Raddoppiamento Sintattico

1. data: in a ...V\#\#C... sequence, C is geminated iff V is stressed and C is not [sC] spelling gemination no gemination paltò pulito paltò ppulito "clean coat"
cittá triste cittá ttriste citta solare cittá ssolare
"sad city" vs. paltò sporco
paltò sporco
"solar city"
2. analysis: as before, gemination targets the extra CV provided by stress. The empty Nucleus enclosed by geminates must be properly governed.
3. vowels spread morpheme-internally, consonants spread over morpheme-boundaries.
c. selection of the definite article: il - lo ($\mathrm{N}=$ palatal nasal, $\mathrm{S}=$ postalv. voiceless fricative)
4. il / __C...
il parco "the park"
il sole "the sun"
il libro "the book"
vs.
5. lo / __sC...
lo studio "the study"
lo sbaglio "the error"
lo sporco "the dirty (one)"
6. il / __TR...
il treno "the train"
il freddo " the cold"
il plico " the fold"
7. lo / __ /CC/ and [j]
lo zio ttsio "the uncle"
lo zero dd̄ero "the zero"
lo gnomo njomo "the gnome"
lo sci $\quad \iint \mathrm{i}$ "the ski"
[sc] behaves like a geminate in Italian: its palatalised form is [SJ], e.g. uscita, fresco - fresci
d. summary: a unified analysis, all three phenomena are a function of PG occurs in \#_ Ton.Leng. Rad.Sint. selects blocks PG

C	yes	yes	yes	il	no
TR	yes	yes	yes	il	no
sC	yes	no	no	lo	yes
$\int \mathfrak{y}, \overline{t s}, \overline{d z}$	yes	no	no	lo	yes
RT	no	no	---	---	yes
CiCi	no	no	---	--	yes

(31) The Coda Mirror, Ségéral \& Scheer 1998
(32) Czech r-ř, Scheer 1998a
a. $[\mathrm{r}]$ in word-final position in the Nominative of masculine nouns alternates with [R] in Vocative forms of the same words $8(\check{\mathrm{r}}=$ postalveolar trill):

NOM petr	VOC petř-e	"Peter"
kmotr	kmotř-e	"godfather"
katr	katrí-e	"(iron) bars, prison"
metr	metř-e	"meter"
kufr	kufř-e	"suitcase"
cvikr	cvikř-e	"monocle"
sachr	sachř-e	"Sacher, kind of cake"
kopr	kopř-e	"dill"
svetr	svetř-e	"pullover"
kapr	kapř-e	"carp"
mesr	mesř-e	character from Brecht's Beggar's opera

b. conditions on this alternation

1. no alternation with $[-\mathrm{Vr}]$-stems

NOM	VOC	*VOC	
doktor	doktor-e	*doktoř-e	"doctor"
ponor	ponor-e	*pomoř-e	"flottation line"
mramor	mramor-e	*mramoř-e	"marble"
boxér	boxér-e	*boxéř-e	"boxer"
potěr	potěr-e	*potěí-e	"spawn"
tatár	tatár-e	*tatář-e	"Tatar"

2. no alternation with non-palatal suffixes
NOM GEN DAT

petr	petra	*petrǐ-a	petr-ovi	*petř-ovi	"Peter"
kmotr	kmotra	*kmotř̌-a	kmotr-ovi	*kmotř-ovi	"godfather"
katr	katru	*katrǐ-u	katr-u	*katř̌-u "(iron)	bars"
metr	metru	*metrǐ-u	metr-u	*metř-u	"meter"
kufr	kufru	*kufǐ-u	kufr-u	*kufri-u	"suitcase"
cvikr	cvikru	* cvikĭ-u	cvikr-u	*cvikř-u	"monocle"
sachr	sachru	*sachĭ-u	sachr-u	*sachř-u	"Sacher"
mesr	mesra	*mesǐ̌-a	mesr-ovi	*mesř̌-ovi	character from
					Brecht's Beggar's opera

[^5]
References

Backley, Phillip 1993. Coronal: the undesirable element. In: UCL Working Papers in Linguistics 5, London, 301- 323.
Broadbent, Judith 1991. Linking and intrusive r in English. In: UCL Working Papers in Linguistics 3, London, 281-302.
Brockhaus, Wiebke 1994. Segmental representations without [R]? Some evidence from German. Talk presented at the Government Phonology Workshop, Vienna, April 1994.
de Carvalho, Joaquim Brando, Marc Klein 1996. A subsymbolic approach to phonological primitives. In:
Durand \& Laks 1996, 99-123.
Charette, Monik 1990. Licence to govern. In: Phonology Yearbook 7.2, 233-253.
Clements, George N. 1993. Lieu d'articulation des consonnes et des voyelles: une théorie unifiée. In: Laks, Bernard, Annie Rialland (eds): L'architecture des représentations phonologiques, 101-145. Paris: CNRS Editions.
Collinge, N.E. 1985. The Laws of Indo-European. Amsterdam, Philadelphia: Benjamins.
Cyran, Eugeniusz 1994. Vocalic Elements in Phonology. A study in Munster Irish. Doctoral dissertation, University of Lublin.
Gussmann, Edmund \& Jonathan Kaye 1993. Polish Notes from a Dubrovnik Café. In: SOAS Working Papers in Linguistics and Phonetics 3, 427-462.
Gussmann, Edmund \& Eugeniusz Cyran 1998. Polish consonantal sequences: a phonological testing ground. In: Cyran, Eugeniusz (ed): Structure and Interpretation, 127-138. Lublin: Pase.
Harris, John 1990. Segmental complexity and phonological government. In: Phonology Yearbook 7.2, 255-300.
Harris, John 1992. Licensing Inheritance. In: UCL Working Papers in Linguistics 4, 359-406.
Harris, John 1998. Licensing Inheritance. In: Phonology Yearbook 14.3.
Harris, John 1994. English sound structure. Oxford: Blackwell.
Harris, John, Geoff Lindsey 1995. The elements of phonological representation. In: Durand, J., F. Katamba (eds). Frontiers of Phonology, 34-79. London: Longman.
Hayes, Bruce 1982. Extrametricality and English stress. In: Linguistic Inquiry 13, 227-276.
Kaye, Jonathan 1990. 'Coda' licensing. In: Phonology Yearbook 7.2, 301-330.
Kaye, Jonathan \& Jean Lowenstamm 1985. Compensatory Lengthening in Tiberian Hebrew. In: Wetzels, L. \& E. Sezer (eds). Studies in Compensatory Lengthening, 97-132. Dordrecht: Foris.

KLV 1985 = Kaye, Jonathan, Jean Lowenstamm, Jean-Roger Vergnaud. The internal structure of phonological representations: a theory of Charm and Government. In: Phonology Yearbook 2, 305-328.
KLV 1990 = Kaye, Jonathan, Jean Lowenstamm, Jean-Roger Vergnaud. Constituent structure and government in phonology. In: Phonology Yearbook 7.2, 193-231.
Larsen, Bergeton Uffe 1995. Italian vowel length, Raddoppiamento Sintattico and the definite article. Aunified analysis in Government Phonology. In: Nash, Léa, Georges Tsoulas, Anne Zribi-Hertz (eds): Actes du deuxième colloque Langues et Grammaire, 110-124.
Levin, Juliette 1985. A metrical theory of syllabicity. Doctoral Dissertation, MIT.
Lowenstamm, Jean 1996. CV as the only ayllable type. In: Durand, Jacques, Bernard Laks (eds). Current trends in Phonology: Models and Methods, 419-441. Salford, Manchester: ESRI.
Lowenstamm, Jean in press. The beginning of the word. In Rennison, John (ed): Syllables !? The Hague: HAG.
Paul, Hermann, Peter Wiehl, Siegfried Grosse 1989. Mittelhochdeutsche Grammatik. Tübingen: Niemeyer, 23th edition.
Rennison, John 1978. Bidialektale Phonologie: Die Kompetenz eines Salzburger Sprechers. Doctoral Dissertation, University of Salzburg.
Rennison, John in press. Can there be empty phonological Elements? On empty heads and empty operators. In Rennison, John (ed): Syllables!? The Hague: HAG.

Scheer, Tobias 1996. Une théorie de l'interaction directe entre consonnes. Doctoral dissertation, Université

Paris 7.

Scheer, Tobias 1997. Vowel-zero alternations and their support for a theory of consonantal interaction. In: Bertinetto, P.M., L. Gaeta, G. Jetchev, D. Michals (eds): Certamen Phonologicum III, 67-88. Torino: Rosenberg \& Sellier.
Scheer, Tobias in press. A theory of consonantal interaction. In Rennison, John (ed): Syllables !?. The Hague: HAG.
Scheer, Tobias 1998a. A unified model of Proper Government. In: The Linguistic Review 15, 41-67.
Scheer, Tobias 1998b. Governing Domains are Head-Final. In: Cyran, Eugeniusz (ed): Structure and Interpretation, 261-285. Lublin: Pase.
Schwarz, Ernst 1950. Die Deutschen Mundarten. Göttingen:Vanderhoek \& Ruprecht.
Ségéral, Philippe 1995. Une théorie généralisée de l'apophonie. Doctoral dissertation, Université Paris 7. Ségéral, Philippe, Tobias Scheer 1998. The Coda Mirror. Paper presented at the 31st Poznan Linguistic Meeting, May 1998.
Smith, Norval 1988. Consonant place features. In: van der Hulst, Harry, Norval Smith (eds): Features, segmental structure and harmony processes, Part I, 209-236. Dordrecht.
Szigetvári, Péter 1994. Coronality, velarity and why they are special. In: The Even Yearbook, 185-224. van de Weijer, Jeroen Maarten 1994. Segmental structure and complex segments. Doctoral dissertation, Rijksuniversiteit te Leiden.

[^0]: 1-the judgements I collected from native speakers are not 100% uniform. Especially for the feminine (a)-cases, all speakers prefer the forms with $-e$-, but a few do not exclude the ones lacking it.

[^1]: ${ }^{2}$ West-Atlantic language spoken in Guinea. Data from Klingenheben (1941:17).

[^2]: ${ }^{3}$ Spirantisation occurs in any context except sC-clusters (Got sp,sk,st) and ht,ft (e.g. Lat stella, OHG stërno) and IE [pt,kt] (e.g. Lat captus, noctis, Got haft, nahts (OHG naht > NHG Nacht)). Cf. Paul et al. (1989:113s).
 ${ }^{4}$ There is debate on the status of labials, cf. Braune \& Ebbinghaus (1981:49), Jellinek (1892), Paul et al. (1989:113s,124). The voicing of resulting fricatives is controlled by Verner's Law: iff the fricative is followed by a voiced articulation (=vowel, sonorant, voiced Obstruent) and the preceding vowel it is unstressed in IE, then the fricative is voiced. Otherwise, it is unvoiced (see e.g. Paul et al. 1989:123s for illustration).

[^3]: ${ }^{5}$ The forms given illustrate the active perfective paradigm of sound triliteral roots.
 ${ }^{6}$ Only a handfull of verbs such as $c h v t$ se "tremble", $p t$ "sing" or $j e t$ "ride" disregard this generalization.

[^4]: ${ }^{7}$ Long vowels of the paradigm shown occur only under stress. The phenomenon therefore is called Tonic Lengthening. As stress is irrelevant for the demonstration, it will not be considered. See Larsen (1995) for discussion.

[^5]: 8 [r]-[ř] alternations are quite common in Czech. They occur elsewhere in the morphology and do not necessarily obey the distribution discussed below. On the other hand, there are configurations where [r]s do not alternate with [] although the segmental and syllabic conditions prevailing in the NOM-VOC contrast seem to be met. A full discussion of all these cases would go beyond the scope of this article. The NOM-VOC paradigm for various morphological and contextual reasons stands as a phenomenology of its own.

